Pixel Based Multitemporal Sentinel-1 SAR Despeckling PIMSAR

被引:3
|
作者
Manninen, T. [1 ]
Jaaskelainen, E. [1 ]
机构
[1] Finnish Meteorol Inst, FI-00101 Helsinki, Finland
基金
芬兰科学院;
关键词
Backscatter; Indexes; Synthetic aperture radar; Standards; Radar polarimetry; Spatial resolution; Wetlands; Land surface; synthetic aperture radar (SAR) data; vegetation; NONLOCAL MEANS; IMAGES;
D O I
10.1109/LGRS.2021.3065300
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Despeckling of synthetic aperture radar (SAR) data is a challenge for high-resolution applications. This study presents a new pixel-based multitemporal nonlocal averaging (PIMSAR) approach to apply nonlocal mean filtering to ground range detected high (GRDH) resolution SAR images preserving the smallest details of the spatial resolution (10 m). The similarity of SAR pixels is based on the temporal evolution of nature using a two-step process. The mean and standard deviation of pixelwise intensity from spring to autumn are used as the basis of unsupervised classification of the area of interest. The nonlocal averaging is carried out within each class separately in magnitude order of the temporal averages. The filtered image shows the details that are indistinguishable in the original image. The kurtosis of the filtered image is close to that of a corresponding airborne image. PIMSAR preserves the mean intensity of the image with a relative accuracy better than 0.02%, and yet, the processing is rapid per image and the method is easy to use.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France
    Ndikumana, Emile
    Dinh Ho Tong Minh
    Baghdadi, Nicolas
    Courault, Dominique
    Hossard, Laure
    REMOTE SENSING, 2018, 10 (08)
  • [22] Deformation Monitoring of Pidie Jaya Earthquake using Pairwise Logic of Multitemporal Sentinel-1 SAR Data
    Syahreza, Saumi
    Siddieq, Hibban Hamka
    Saepuloh, Asep
    Mailano, Irwan
    INTERNATIONAL SYMPOSIUM ON EARTH HAZARD AND DISASTER MITIGATION (ISEDM) 2017, 2018, 1987
  • [23] Multitemporal SAR image despeckling based on non-local theory
    Wang, Di
    Deng, Mingjun
    Wang, Zhong
    Yang, Yin
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2023, 11
  • [24] InSAR-Based Tree Height Estimation of Hilly Forest Using Multitemporal Radarsat-1 and Sentinel-1 SAR Data
    Kumar, Praveen
    Krishna, Akhouri Pramod
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 5147 - 5152
  • [25] Crop Type Classification based on Machine Learning with Multitemporal Sentinel-1 Data
    Jeppesen, Jacob Hoxbroe
    Jacobsen, Rune Hylsberg
    Jorgensen, Rasmus Nyholm
    2020 23RD EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2020), 2020, : 557 - 564
  • [26] FLOOD DETECTION IN NORWAY BASED ON SENTINEL-1 SAR IMAGERY
    Reksten, J. H.
    Salberg, A-B
    Solberg, R.
    ISPRS ICWG III/IVA GI4DM 2019 - GEOINFORMATION FOR DISASTER MANAGEMENT, 2019, 42-3 (W8): : 349 - 355
  • [27] Mountain crop monitoring with multitemporal Sentinel-1 and Sentinel-2 imagery
    Notarnicola, C.
    Asam, S.
    Jacob, A.
    Marin, C.
    Rossi, M.
    Stendardi, L.
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [28] A CIRCULAR APPROACH TO MULTI-CLASS CHANGE DETECTION IN MULTITEMPORAL SENTINEL-1 SAR IMAGE TIME SERIES
    Bertoluzza, Manuel
    Bruzzone, Lorenzo
    Bovolo, Francesca
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4201 - 4204
  • [29] High Resolution Forest Maps from Interferometric TanDEM-X and Multitemporal Sentinel-1 SAR Data
    Daniel Baron
    Stefan Erasmi
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85 : 389 - 405
  • [30] High Resolution Forest Maps from Interferometric TanDEM-X and Multitemporal Sentinel-1 SAR Data
    Baron, Daniel
    Erasmi, Stefan
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2017, 85 (06): : 389 - 405