Pixel Based Multitemporal Sentinel-1 SAR Despeckling PIMSAR

被引:3
|
作者
Manninen, T. [1 ]
Jaaskelainen, E. [1 ]
机构
[1] Finnish Meteorol Inst, FI-00101 Helsinki, Finland
基金
芬兰科学院;
关键词
Backscatter; Indexes; Synthetic aperture radar; Standards; Radar polarimetry; Spatial resolution; Wetlands; Land surface; synthetic aperture radar (SAR) data; vegetation; NONLOCAL MEANS; IMAGES;
D O I
10.1109/LGRS.2021.3065300
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Despeckling of synthetic aperture radar (SAR) data is a challenge for high-resolution applications. This study presents a new pixel-based multitemporal nonlocal averaging (PIMSAR) approach to apply nonlocal mean filtering to ground range detected high (GRDH) resolution SAR images preserving the smallest details of the spatial resolution (10 m). The similarity of SAR pixels is based on the temporal evolution of nature using a two-step process. The mean and standard deviation of pixelwise intensity from spring to autumn are used as the basis of unsupervised classification of the area of interest. The nonlocal averaging is carried out within each class separately in magnitude order of the temporal averages. The filtered image shows the details that are indistinguishable in the original image. The kurtosis of the filtered image is close to that of a corresponding airborne image. PIMSAR preserves the mean intensity of the image with a relative accuracy better than 0.02%, and yet, the processing is rapid per image and the method is easy to use.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Pixel Based Multitemporal Sentinel-1 SAR Despeckling PIMSAR
    Manninen, T.
    Jaaskelainen, E.
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [2] Sentinel-1 Multitemporal SAR Products
    Amitrano, Donato
    Cecinati, Francesca
    Di Martino, Gerardo
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3973 - 3976
  • [3] CHANGE ANALYSIS USING MULTITEMPORAL SENTINEL-1 SAR IMAGES
    Thu Trang Le
    Atto, Abdourrahmane M.
    Trouve, Emmanuel
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4145 - 4148
  • [4] Sentinel-1 Dual-Polarization SAR Images Despeckling Network Based on Unsupervised Learning
    Li, Jie
    Lin, Liupeng
    He, Mange
    He, Jiang
    Yuan, Qiangqiang
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [5] Shallow Water Depth Retrieval From Multitemporal Sentinel-1 SAR Data
    Bian, Xiaolin
    Shao, Yun
    Wang, Shiang
    Tian, Wei
    Wang, Xiaochen
    Zhang, Chunyan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (09) : 2991 - 3000
  • [6] Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data
    Marzi, David
    Gamba, Paolo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11789 - 11799
  • [7] Multitemporal SAR RGB Processing for Sentinel-1 GRD Products: Methodology and Applications
    Amitrano, Donato
    Guida, Raffaella
    Ruello, Giuseppe
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) : 1497 - 1507
  • [8] MULTITEMPORAL SAR IMAGE DESPECKLING BASED ON IMMSE FILTERING
    Yahia, Mohamed
    Ali, Tarig
    Mortula, Md Maruf
    El Mahdi, Samy
    Arampola, Nuwanthi Sashipraba
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 113 - 116
  • [9] POLARIMETRIC AND MULTITEMPORAL INFORMATION EXTRACTED FROM SENTINEL-1 SAR DATA TO MAP BUILDINGS
    Chini, Marco
    Pelich, Ramona
    Hostache, Renaud
    Matgen, Patrick
    Lopez-Martinez, Carlos
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8132 - 8134
  • [10] Discrimination of pearl millet in the rainfed agroecosystem using multitemporal sentinel-1 SAR data
    Jugal Kishore Mani
    A. O. Varghese
    G. Sreenivasan
    Ashish Shrivastava
    Proceedings of the Indian National Science Academy, 2024, 90 : 31 - 38