Preliminary experimentation on vibrotactile feedback in the context of mu-rhythm based BCI

被引:5
作者
Cincotti, Febo [1 ]
Kauhanen, Laura [4 ]
Aloise, Fabio [1 ]
Palomaeki, Tapio [4 ]
Caporusso, Nicholas [1 ]
Jylaenki, Pasi [4 ]
Mattia, Donatella
Babiloni, Fabio [1 ,2 ]
Vanacker, Gerolf [5 ]
Nuttin, Marnix [5 ]
Marciani, Maria Grazia [1 ,3 ]
Millan, Jose del R. [6 ,7 ]
机构
[1] IRCCS, Fdn St Lucia, Lab Imaging Neuroelettr & Brain Comp Interface, I-00179 Rome, Italy
[2] Univ Roma La Sapienza, DFUF, Rome, Italy
[3] Univ Roma Tor Vergata, DN, Rome, Italy
[4] Aalto Univ, LCE, Helsinki, Finland
[5] Katholieke Univ Leuven, DME, Leuven, Belgium
[6] IDIAP Res Inst, Martigny, Switzerland
[7] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
来源
2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16 | 2007年
关键词
D O I
10.1109/IEMBS.2007.4353398
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain-Computer Interfaces (BCIs) need an uninterrupted flow of feedback to the user, which is usually delivered through the visual channel. Our aim is to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. An experimental setup for delivery of vibrotactile feedback, including specific hardware and software arrangements, was specified. We compared vibrotactile and visual feedback, addressing the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The preliminary experimental. setup included a simulated BCI control. in which all parts reflected the computational and actuation process of an actual BCI, except the souce, which was simulated using a "noisy" PC mouse. Results indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task.
引用
收藏
页码:4739 / +
页数:2
相关论文
共 8 条
[1]   A multimodal brain-based feedback and communication system [J].
Hinterberger, T ;
Neumann, N ;
Pham, M ;
Kübler, A ;
Grether, A ;
Hofmayer, N ;
Wilhelm, B ;
Flor, H ;
Birbaumer, N .
EXPERIMENTAL BRAIN RESEARCH, 2004, 154 (04) :521-526
[2]  
McFarland D J, 1998, IEEE Trans Rehabil Eng, V6, P7, DOI 10.1109/86.662615
[3]   Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery [J].
Neuper, C ;
Schlögl, A ;
Pfurtscheller, G .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 1999, 16 (04) :373-382
[4]   An auditory brain-computer interface based on the self-regulation of slow cortical potentials [J].
Pham, M ;
Hinterberger, T ;
Neumann, N ;
Kübler, A ;
Hofmayer, N ;
Grether, A ;
Wilhelm, B ;
Vatine, JJ ;
Birbaumer, N .
NEUROREHABILITATION AND NEURAL REPAIR, 2005, 19 (03) :206-218
[5]   BCI2000: A general-purpose, brain-computer interface (BCI) system [J].
Schalk, G ;
McFarland, DJ ;
Hinterberger, T ;
Birbaumer, N ;
Wolpaw, JR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :1034-1043
[6]   Brain-controlled interfaces: Movement restoration with neural prosthetics [J].
Schwartz, Andrew B. ;
Cui, X. Tracy ;
Weber, Douglas J. ;
Moran, Daniel W. .
NEURON, 2006, 52 (01) :205-220
[7]  
Stem B. E., 1993, MERGING SENSES
[8]   Brain-computer interfaces for communication and control [J].
Wolpaw, JR ;
Birbaumer, N ;
McFarland, DJ ;
Pfurtscheller, G ;
Vaughan, TM .
CLINICAL NEUROPHYSIOLOGY, 2002, 113 (06) :767-791