Interfacial Connection Mechanisms in Calcium-Silicate-Hydrates/Polymer Nanocomposites: A Molecular Dynamics Study

被引:122
作者
Zhou, Yang [1 ,2 ,3 ]
Hou, Dongshuai [4 ]
Manzano, Hegoi [5 ]
Orozco, Carlos A. [2 ]
Geng, Guoqing [2 ]
Monteiro, Paulo J. M. [2 ,6 ]
Liu, Jiaping [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
[3] Jiangsu Res Inst Bldg Sci Co, State Key Lab High Performance Civil Engn Mat, Nanjing 211103, Jiangsu, Peoples R China
[4] Qingdao Technol Univ, Sch Civil Engn, Qingdao 266033, Peoples R China
[5] Univ Basque Country, Dept Condensed Matter Phys, UPV EHU, Barrio Sarriena S-N, Leioa 48960, Spain
[6] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
molecular dynamics; calcium-silicate-hydrates; interface; poly(acrylic acid); poly(vinyl alcohol); poly(ethylene glycol); C-S-H; FORCE-FIELD; HYDRATE/POLYMER COMPLEXES; INTERACTION ENERGIES; HYBRID MATERIALS; HYDRATE; WATER; POLYMERS; CEMENT; SIMULATION;
D O I
10.1021/acsami.7b12795
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Properties of organic/inorganic composites can be highly dependent on the interfacial connections. In this work, molecular dynamics, using pair-potential based force fields, was employed to investigate the structure, dynamics, and stability of interfacial connections between calcium silicate hydrates (C-S-H) and organic functional groups of three different polymer species. The calculation results suggest that the affinity between C-S-H and polymers is influenced by the polarity of the functional groups and the diffusivity and aggregation tendency of the polymers. In the interfaces, the calcium counterions from C-S-H act as the coordination atoms in bridging the double bonded oxygen atoms in the carboxyl groups (-COOH), and the Ca-O connection plays a dominant role in binding poly(acrylic acid) (PAA) due to the high bond strength defined by time-correlated function. The defective calcium silicate chains provide significant numbers of nonbridging oxygen sites to accept H-bonds from -COOH groups. As compared with PAA, the interfacial interactions are much weaker between C-S-H and poly(vinyl alcohol) (PVA) or poly(ethylene glycol) (PEG). Predominate percentage of the -OH groups in the PVA form H-bonds with inter- and intramolecule, which results in the polymer intertwining and reduces the probability of H-bond connections between PVA and C-S-H. On the other hand, the inert functional groups (C-O-C) in poly(ethylene glycol) (PEG) make this polymer exhibit unfolded configurations and move freely with little restrictions. The interaction mechanisms interpreted in this organic inorganic interface can give fundamental insights into the polymer modification of C-S-H and further implications to improving cement-based materials from the genetic level.
引用
收藏
页码:41014 / 41025
页数:12
相关论文
共 50 条
  • [41] Water dynamics in calcium silicate hydrates probed by inelastic neutron scattering and molecular dynamics simulations
    Zhakiyeva, Zhanar
    Magnin, Valerie
    Poulain, Agnieszka
    Campillo, Sylvain
    Asta, Maria P.
    Besselink, Rogier
    Gaboreau, Stephane
    Claret, Francis
    Grangeon, Sylvain
    Rudic, Svemir
    Rols, Stephane
    Jimenez-Ruiz, Monica
    Bourg, Ian C.
    Van Driessche, Alexander E. S.
    Cuello, Gabriel J.
    Fernandez-Martinez, Alejandro
    CEMENT AND CONCRETE RESEARCH, 2024, 184
  • [42] Interfacial mechanical behaviour of protein-mineral nanocomposites: A molecular dynamics investigation
    Lai, Zheng Bo
    Bai, Ruixiang
    Lei, Zhenkun
    Yan, Cheng
    JOURNAL OF BIOMECHANICS, 2018, 73 : 161 - 167
  • [43] A Molecular Dynamics Study on the Structure, Interfaces, Mechanical Properties, and Mechanisms of a Calcium Silicate Hydrate/2D-Silica Nanocomposite
    Zhou, Yang
    Zheng, Haojie
    Qiu, Yuwen
    Zou, Xixi
    Huang, Jiale
    FRONTIERS IN MATERIALS, 2020, 7
  • [44] Molecular dynamics study of solvated aniline and ethylene glycol monomers confined in calcium silicate nanochannels: a case study of tobermorite
    Zhou, Yang
    Hou, Dongshuai
    Jiang, Jinyang
    She, Wei
    Li, Jiaqi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (23) : 15145 - 15159
  • [45] Carbonation Competing Functionalization on Calcium-Silicate-Hydrates: Investigation of Four Promising Surface-Activation Techniques
    Giraudo, Nicolas
    Thissen, Peter
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (07): : 3985 - 3994
  • [46] Nano mechanical properties on the mineralogical array of calcium silicate hydrates and calcium hydroxide through molecular dynamics-CSIR-SERC
    Bhuvaneshwari, B.
    Palani, G. S.
    Karunya, R.
    Iyer, Nagesh R.
    CURRENT SCIENCE, 2015, 108 (06): : 1058 - 1065
  • [47] Unconventional growth of methane hydrates: A molecular dynamics and machine learning study
    Shi, Qiao
    Lin, Yanwen
    Hao, Yongchao
    Song, Zixuan
    Zhou, Ziyue
    Fu, Yuequn
    Zhang, Zhisen
    Wu, Jianyang
    ENERGY, 2023, 282
  • [48] Molecular dynamics simulation of the interfacial bonding properties between graphene oxide and calcium silicate hydrate
    Wang, Pan
    Qiao, Gang
    Guo, Yupeng
    Zhang, Yue
    Hou, Dongshuai
    Jin, Zuquan
    Zhang, Jinrui
    Wang, Muhan
    Hu, Xiaoxia
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 260
  • [49] A Molecular Dynamics Study of Polymer/Graphene Nanocomposites
    Rissanou, Anastassia N.
    Harmandaris, Vagelis
    MACROMOLECULAR SYMPOSIA, 2013, 331 (01) : 43 - 49
  • [50] Interactions of sodium chloride solution and calcium silicate hydrate with different calcium to silicon ratios: A molecular dynamics study
    Deng, Hongyang
    He, Zhen
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 268