iffDetector: Inference-Aware Feature Filtering for Object Detection

被引:3
|
作者
Mao, Mingyuan [1 ]
Tian, Yuxin [1 ]
Zhang, Baochang [2 ]
Ye, Qixiang [3 ]
Liu, Wanquan [4 ]
Doermann, David [5 ]
机构
[1] Beihang Univ, Automat & Elect Engn Sch, Beijing 100191, Peoples R China
[2] Beihang Univ, Artificial Intelligence Inst, Beijing 100191, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 101408, Peoples R China
[4] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou 510275, Peoples R China
[5] Univ Buffalo State Univ New York, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
基金
中国国家自然科学基金;
关键词
Feature extraction; Detectors; Convolution; Optimization; Object detection; Negative feedback; Semantics; iffDetector; inference-aware feature filtering (IFF); negative feedback; object detection;
D O I
10.1109/TNNLS.2021.3081864
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern convolutional neural network (CNN)-based object detectors focus on feature configuration during training but often ignore feature optimization during inference. In this article, we propose a new feature optimization approach to enhance features and suppress background noise in both the training and inference stages. We introduce a generic inference-aware feature filtering (IFF) module that can be easily combined with existing detectors, resulting in our iffDetector. Unlike conventional open-loop feature calculation approaches without feedback, the proposed IFF module performs the closed-loop feature optimization by leveraging high-level semantics to enhance the convolutional features. By applying the Fourier transform to analyze our detector, we prove that the IFF module acts as a negative feedback that can theoretically guarantee the stability of the feature learning. IFF can be fused with CNN-based object detectors in a plug-and-play manner with little computational cost overhead. Experiments on the PASCAL VOC and MS COCO datasets demonstrate that our iffDetector consistently outperforms state-of-the-art methods with significant margins.
引用
收藏
页码:6494 / 6503
页数:10
相关论文
共 50 条
  • [31] Multi-scale Feature and Spatial Relation Inference for Object Detection
    Zhou, Tianyu
    Miao, Zhenjiang
    Wang, Jiaji
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 666 - 675
  • [32] Edge Distraction-aware Salient Object Detection
    Ren, Sucheng
    Liu, Wenxi
    Jiao, Jianbo
    Han, Guoqiang
    He, Shengfeng
    IEEE MULTIMEDIA, 2023, 30 (03) : 63 - 73
  • [33] AFAN: Augmented Feature Alignment Network for Cross-Domain Object Detection
    Wang, Hongsong
    Liao, Shengcai
    Shao, Ling
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4046 - 4056
  • [34] Object Detection Method Based on Shallow Feature Fusion and Semantic Information Enhancement
    Luo, Huilan
    Wang, Pei
    Chen, Hongkun
    Xu, Min
    IEEE SENSORS JOURNAL, 2021, 21 (19) : 21839 - 21851
  • [35] Fine-Grained Feature Enhancement for Object Detection in Remote Sensing Images
    Zhou, Yong
    Wang, Sifan
    Zhao, Jiaqi
    Zhu, Hancheng
    Yao, Rui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [36] Semantic Information Feature Aggregation Network for Object Detection in Remote Sensing Images
    Guo, Zhe
    Bi, Guoling
    Lv, Hengyi
    Zhao, Yuchen
    Han, Lintao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [37] A Lightweight Fusion Strategy With Enhanced Interlayer Feature Correlation for Small Object Detection
    Xiao, Yao
    Xu, Tingfa
    Yu, Xin
    Fang, Yuqiang
    Li, Jianan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [38] Feature Split-Merge-Enhancement Network for Remote Sensing Object Detection
    Ma, Wenping
    Li, Na
    Zhu, Hao
    Jiao, Licheng
    Tang, Xu
    Guo, Yuwei
    Hou, Biao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] DAFA: Diversity-Aware Feature Aggregation for Attention-Based Video Object Detection
    Roh, Si-Dong
    Chung, Ki-Seok
    IEEE ACCESS, 2022, 10 : 93453 - 93463
  • [40] Transformed Dynamic Feature Pyramid for Small Object Detection
    Liang, Hong
    Yang, Ying
    Zhang, Qian
    Feng, Linxia
    Ren, Jie
    Liang, Qiyao
    IEEE ACCESS, 2021, 9 : 134649 - 134659