iffDetector: Inference-Aware Feature Filtering for Object Detection

被引:3
|
作者
Mao, Mingyuan [1 ]
Tian, Yuxin [1 ]
Zhang, Baochang [2 ]
Ye, Qixiang [3 ]
Liu, Wanquan [4 ]
Doermann, David [5 ]
机构
[1] Beihang Univ, Automat & Elect Engn Sch, Beijing 100191, Peoples R China
[2] Beihang Univ, Artificial Intelligence Inst, Beijing 100191, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 101408, Peoples R China
[4] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou 510275, Peoples R China
[5] Univ Buffalo State Univ New York, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
基金
中国国家自然科学基金;
关键词
Feature extraction; Detectors; Convolution; Optimization; Object detection; Negative feedback; Semantics; iffDetector; inference-aware feature filtering (IFF); negative feedback; object detection;
D O I
10.1109/TNNLS.2021.3081864
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern convolutional neural network (CNN)-based object detectors focus on feature configuration during training but often ignore feature optimization during inference. In this article, we propose a new feature optimization approach to enhance features and suppress background noise in both the training and inference stages. We introduce a generic inference-aware feature filtering (IFF) module that can be easily combined with existing detectors, resulting in our iffDetector. Unlike conventional open-loop feature calculation approaches without feedback, the proposed IFF module performs the closed-loop feature optimization by leveraging high-level semantics to enhance the convolutional features. By applying the Fourier transform to analyze our detector, we prove that the IFF module acts as a negative feedback that can theoretically guarantee the stability of the feature learning. IFF can be fused with CNN-based object detectors in a plug-and-play manner with little computational cost overhead. Experiments on the PASCAL VOC and MS COCO datasets demonstrate that our iffDetector consistently outperforms state-of-the-art methods with significant margins.
引用
收藏
页码:6494 / 6503
页数:10
相关论文
共 50 条
  • [1] Class-Aware Feature Aggregation Network for Video Object Detection
    Han, Liang
    Wang, Pichao
    Yin, Zhaozheng
    Wang, Fan
    Li, Hao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8165 - 8178
  • [2] Deep Convolutional Feature Enhancement for Remote Sensing Object Detection
    Yang, Zhigang
    Liu, Yiming
    Gao, Zehao
    Wen, Guiwei
    Zhang, Wei Emma
    Xiao, Yihan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [3] Feature Learning Improved by Location Guidance and Supervision for Object Detection
    Li, Bingying
    Xiong, Jiale
    Fu, Xiang
    Zeng, Jiexian
    Leng, Lu
    IEEE ACCESS, 2021, 9 (09): : 133335 - 133345
  • [4] Boundary-Aware Feature Fusion With Dual-Stream Attention for Remote Sensing Small Object Detection
    Song, Jingnan
    Zhou, Mingliang
    Luo, Jun
    Pu, Huayan
    Feng, Yong
    Wei, Xuekai
    Jia, Weijia
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [5] An Efficient Feature Pyramid Network for Object Detection in Remote Sensing Imagery
    Fang Qingyun
    Zhang Lin
    Wang Zhaokui
    IEEE ACCESS, 2020, 8 : 93058 - 93068
  • [6] Feature Alignment FPN for Oriented Object Detection in Remote Sensing Images
    Li, Zhiqing
    Li, Erzhu
    Xu, Tianyu
    Samat, Alim
    Liu, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [7] Representative Feature Alignment for Adaptive Object Detection
    Xu, Shan
    Zhang, Huaidong
    Xu, Xuemiao
    Hu, Xiaowei
    Xu, Yangyang
    Dai, Liangui
    Choi, Kup-Sze
    Heng, Pheng-Ann
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 689 - 700
  • [8] Latent Feature Pyramid Network for Object Detection
    Xie, Jin
    Pang, Yanwei
    Nie, Jing
    Cao, Jiale
    Han, Jungong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2153 - 2163
  • [9] EDGETUNE: Inference-Aware Multi-Parameter Tuning
    Rocha, Isabelly
    Felber, Pascal
    Schiavoni, Valerio
    Chen, Lydia Y.
    PROCEEDINGS OF THE TWENTY-THIRD ACM/IFIP INTERNATIONAL MIDDLEWARE CONFERENCE, MIDDLEWARE 2022, 2022, : 1 - 14
  • [10] Dense Attentive Feature Enhancement for Salient Object Detection
    Li, Zun
    Lang, Congyan
    Liang, Liqian
    Zhao, Jian
    Feng, Songhe
    Hou, Qibin
    Feng, Jiashi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8128 - 8141