Fractional elliptic problem in exterior domains with nonlocal Neumann condition

被引:16
作者
Alves, Claudianor O. [1 ,2 ]
Torres Ledesma, Cesar E. [1 ,2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Nacl Trujillo, Dept Matemat, Av Juan Pablo II S-N, Trujillo, Peru
关键词
Variational methods; Nonlinear elliptic equations; Integral representations of solutions; SCHRODINGER-EQUATION; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; NODAL SOLUTIONS;
D O I
10.1016/j.na.2019.111732
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the existence of solution for the following class of fractional elliptic problem {(-Delta)(s)u + u = Q(x)vertical bar u vertical bar(p-1)u in R-N \ Omega (0.1) N(s)u(x) = 0 in Omega, where s is an element of (0, 1), N > 2s, Omega subset of R-N is a bounded set with smooth boundary, (-Delta)(s) denotes the fractional Laplacian operator and N-s is the nonlocal operator that describes the Neumann boundary condition, which is given by N(s)u(x) = C-N,C-s integral(RN\Omega) u(x) - u(y)/vertical bar x - y vertical bar(N+2s) dy, x is an element of Omega. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:29
相关论文
共 33 条
[1]  
Adams A., 2003, SOBOLEV SPACES
[2]  
Alves C.O., PREPRINT
[3]   A multiplicity result for a nonlinear fractional Schrodinger equation in RN without the Ambrosetti-Rabinowitz condition [J].
Alves, Claudianor O. ;
Ambrosio, Vincenzo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) :498-522
[4]  
Alves CO, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-016-0983-x
[5]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[6]   Multiplicity of solutions for a class of elliptic problem in R2 with Neumann conditions [J].
Alves, CO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (01) :20-39
[7]  
Alves CO., 2004, ABSTR APPL ANAL, V2004, pArticl, DOI 10.1155/S1085337504310018
[8]   Sign-changing solutions for a class of Schrodinger equations with vanishing potentials [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) :127-152
[9]   Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions [J].
Barrios, Begona ;
Medina, Maria .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) :475-495
[10]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18