Fractional elliptic problem in exterior domains with nonlocal Neumann condition

被引:14
作者
Alves, Claudianor O. [1 ,2 ]
Torres Ledesma, Cesar E. [1 ,2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Nacl Trujillo, Dept Matemat, Av Juan Pablo II S-N, Trujillo, Peru
关键词
Variational methods; Nonlinear elliptic equations; Integral representations of solutions; SCHRODINGER-EQUATION; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; NODAL SOLUTIONS;
D O I
10.1016/j.na.2019.111732
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the existence of solution for the following class of fractional elliptic problem {(-Delta)(s)u + u = Q(x)vertical bar u vertical bar(p-1)u in R-N \ Omega (0.1) N(s)u(x) = 0 in Omega, where s is an element of (0, 1), N > 2s, Omega subset of R-N is a bounded set with smooth boundary, (-Delta)(s) denotes the fractional Laplacian operator and N-s is the nonlocal operator that describes the Neumann boundary condition, which is given by N(s)u(x) = C-N,C-s integral(RN\Omega) u(x) - u(y)/vertical bar x - y vertical bar(N+2s) dy, x is an element of Omega. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:29
相关论文
共 33 条
  • [1] Adams A., 2003, SOBOLEV SPACES
  • [2] Alves C.O., PREPRINT
  • [3] A multiplicity result for a nonlinear fractional Schrodinger equation in RN without the Ambrosetti-Rabinowitz condition
    Alves, Claudianor O.
    Ambrosio, Vincenzo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 498 - 522
  • [4] Alves CO, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-016-0983-x
  • [5] Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains
    Alves, Claudianor O.
    Souto, Marco A. S.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1153 - 1166
  • [6] Multiplicity of solutions for a class of elliptic problem in R2 with Neumann conditions
    Alves, CO
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (01) : 20 - 39
  • [7] Sign-changing solutions for a class of Schrodinger equations with vanishing potentials
    Ambrosio, Vincenzo
    Isernia, Teresa
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) : 127 - 152
  • [8] [Anonymous], 2004, Abstr Appl Anal, DOI DOI 10.1155/S1085337504310018
  • [9] Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions
    Barrios, Begona
    Medina, Maria
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) : 475 - 495
  • [10] Partial symmetry of least energy nodal solutions to some variational problems
    Bartsch, T
    Weth, T
    Willew, M
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1): : 1 - 18