Effects of defects on fatigue behavior of TC17 titanium alloy for compressor blades: Crack initiation and modeling of fatigue strength

被引:32
作者
Chi, Weiqian [1 ]
Wang, Wenjing [1 ]
Xu, Wei [2 ]
Li, Gen [3 ]
Chen, Xin [2 ]
Sun, Chengqi [3 ,4 ]
机构
[1] Beijing Jiaotong Univ, Key Lab Vehicle Adv Mfg Measuring & Control Techn, Minist Educ, Beijing 100044, Peoples R China
[2] Aero Engine Corp China, Key Lab Aeronaut Mat Testing & Evaluat, Beijing Key Lab Aeronaut Mat Testing & Evaluat, Beijing Inst Aeronaut Mat, Beijing 100095, Peoples R China
[3] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
TC17 titanium alloy; Surface defect; Very high cycle fatigue; Crack initiation; Fatigue strength prediction; HIGH-CYCLE-FATIGUE; STRESS RATIO; TI-6AL-4V; LIMIT; MECHANISM; GROWTH; STEEL;
D O I
10.1016/j.engfracmech.2021.108136
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
S-N data of TC17 titanium alloy with surface defects exhibits plateau region (105-109 cycles) feature. The effects of defects are greatly related to the defect size. When the defect size is bigger than the critical one, the crack initiates from the defect, and the fatigue strength sigma w incorporating the effects of defects could be expressed as sigma w = C(root of the projection area of defect perpendicular to the principal stress direction, C and n are parameters. The model is also validated by the experimental results of metallic materials in literature.
引用
收藏
页数:13
相关论文
共 36 条
[11]   A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy [J].
Hu, Y. N. ;
Wu, S. C. ;
Wu, Z. K. ;
Zhong, X. L. ;
Ahmed, S. ;
Karabal, S. ;
Xiao, X. H. ;
Zhang, H. O. ;
Withers, P. J. .
INTERNATIONAL JOURNAL OF FATIGUE, 2020, 136
[12]   Effect of stress ratio on VHCF behavior for a compressor blade titanium alloy [J].
Huang, Zhi Yong ;
Liu, Han Qing ;
Wang, Hao Min ;
Wagner, Daniele ;
Khan, Muhammad Kashif ;
Wang, Qing Yuan .
INTERNATIONAL JOURNAL OF FATIGUE, 2016, 93 :232-237
[13]   Very-high-cycle fatigue behavior of a structural steel with and without induced surface defects [J].
Jiang, Qingqing ;
Sun, Chengqi ;
Liu, Xiaolong ;
Hong, Youshi .
INTERNATIONAL JOURNAL OF FATIGUE, 2016, 93 :352-362
[14]   A Very High-Cycle Fatigue Test and Fatigue Properties of TC17 Titanium Alloy [J].
Jiao, Shengbo ;
Gao, Chao ;
Cheng, Li ;
Li, Xiaowei ;
Feng, Yu .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (03) :1085-1093
[15]   Effect of defects on the fatigue limit of Ni-based superalloy 718 with different grain sizes [J].
Kevinsanny ;
Okazaki, Saburo ;
Takakuwa, Osamu ;
Ogawa, Yuhei ;
Okita, Koichi ;
Funakoshi, Yusuke ;
Yamabe, Junichiro ;
Matsuoka, Saburo ;
Matsunaga, Hisao .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (05) :1203-1213
[16]   Effects of Loading Frequency and Specimen Geometry on High Cycle and Very High Cycle Fatigue Life of a High Strength Titanium Alloy [J].
Li, Yanqing ;
Song, Qingyuan ;
Feng, Shichao ;
Sun, Chengqi .
MATERIALS, 2018, 11 (09)
[17]   Very High Cycle Fatigue Failure Mechanism of TC17 Alloy [J].
Liu Hanqing ;
He Chao ;
Huang Zhiyong ;
Wang Qingyuan .
ACTA METALLURGICA SINICA, 2017, 53 (09) :1047-1054
[18]   Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy [J].
Liu, Xiaolong ;
Sun, Chengqi ;
Hong, Youshi .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 622 :228-235
[19]  
Lukas P, 1990, SHORT FATIGUE CRACKS, P265
[20]  
Murakami Y., 2019, Elsevier, DOI DOI 10.1016/C2016-0-05272-5