共 50 条
Circ-USP9X Inhibition Reduces Oxidized Low-density Lipoprotein-induced Endothelial Cell Injury via the microRNA 599/Chloride Intracellular Channel 4 Axis
被引:14
|作者:
Peng, Huaiyu
[1
]
Sun, Jihu
[2
]
Li, Yi
[1
]
Zhang, Ye
[1
]
Zhong, Yongjin
[1
]
机构:
[1] Ninth Hosp Xian, Dept Vasc Intervent, 151 East Sect South Second Ring Rd, Xian, Shaanxi, Peoples R China
[2] Xian Hosp Tradit Chinese Med, Dept Oncol, Xian, Shanxi, Peoples R China
关键词:
AS;
circ-USP9X;
miR-599;
CLIC4;
ox-LDL;
HUVEC;
NF-KAPPA-B;
CIRCULAR RNA;
OXIDATIVE STRESS;
ATHEROSCLEROSIS;
PROGRESSION;
PROMOTES;
NETWORK;
USP9X;
D O I:
10.1097/FJC.0000000000001104
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Atherosclerosis (AS) is the common pathological basis of cardiovascular disease. Circular RNA circ-USP9X (hsa_circ_0090231) has been discovered to be upregulated in oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs), but the role of circ-USP9X in ox-LDL-induced endothelial cell injury is indistinct. The purpose of the research was to investigate the role and regulatory mechanism of circ-USP9X in ox-LDL--induced endothelial cell injury. Expression of circ-USP9X was examined by quantitative real-time polymerase chain reaction. Loss-of-function experiments were performed to assess the impacts of circ-USP9X inhibition on viability, cell cycle progression, apoptosis, and tube formation, inflammation, and oxidative stress of ox-LDL-induced HUVEC. The regulatory mechanism of circ-USP9X predicted by bioinformatics analysis and verified by dual-luciferase reporter or RNA immunoprecipitation assays. We observed that circ-USP9X was upregulated in AS patients' serum and ox-LDL-induced HUVEC. Inhibition of circ-USP9X elevated viability, promoted cell cycle progression and angiopoiesis, and decreased apoptosis, inflammation, and oxidative stress of ox-LDL-induced HUVEC. Mechanically, circ-USP9X regulated chloride intracellular channel 4 (CLIC4) messenger RNA expression by sponging microRNA (miR)-599. Furthermore, miR-599 inhibitor overturned circ-USP9X silencing-mediated influence on ox-LDL-induced HUVEC injury. Also, CLIC4 overexpression reversed miR-599 elevation-mediated effect on ox-LDL-induced HUVEC injury. In conclusion, circ-USP9X silencing decreased ox-LDL-induced endothelial cell injury via the miR-599/CLIC4 axis, which offered a novel molecular mechanism to comprehend the pathology of AS.
引用
收藏
页码:560 / 571
页数:12
相关论文