DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

被引:62
作者
Ganji, Davood Domiri [1 ]
Ganji, Zaman Ziabkhsh [2 ]
Ganji, Hosain Domiri [3 ]
机构
[1] Mazandaran Univ, Dept Mech Engn, Babol Sar, Iran
[2] NIOC, IOR EOR Res Inst, Tehran, Iran
[3] Islamic Azad Univ, Sci & Res Branch, Tehran, Iran
来源
THERMAL SCIENCE | 2011年 / 15卷
关键词
homotopy perturbation method; numerical method; annular fin; thermal conductivity in heat transfer;
D O I
10.2298/TSCI11S1111G
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermogeometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.
引用
收藏
页码:S111 / S115
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 1984, PERTURBATION METHODS
[2]  
Ariel P. D., 2010, NONLINEAR SCI LETT A, V1, P43
[3]   Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity [J].
Arslanturk, Cihat .
HEAT AND MASS TRANSFER, 2009, 45 (04) :519-525
[4]   PERTURBATION SOLUTION FOR CONVECTING FIN WITH VARIABLE THERMAL-CONDUCTIVITY [J].
AZIZ, A ;
HUQ, SME .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1975, 97 (02) :300-301
[5]  
Ganji ZZ, 2008, INT J NONLIN SCI NUM, V9, P415
[6]   Study on nonlinear Jeffery-Hamel flow by He's semi-analytical methods and comparison with numerical results [J].
Ganji, Z. Z. ;
Ganji, D. D. ;
Esmaeilpour, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) :2107-2116
[7]   The homotopy perturbation method for nonlinear oscillators with discontinuities [J].
He, JH .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 151 (01) :287-292
[8]   Homotopy perturbation technique [J].
He, JH .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 178 (3-4) :257-262
[9]  
Kern D.Q., 1972, EXTENDED SURFACE HEA
[10]   Homotopy perturbation method for the mixed Volterra-Fredholm integral equations [J].
Yildirim, Ahmet .
CHAOS SOLITONS & FRACTALS, 2009, 42 (05) :2760-2764