Field evaluations of a deep learning-based intelligent spraying robot with flow control for pear orchards

被引:28
|
作者
Seol, Jaehwi [1 ,2 ]
Kim, Jeongeun [3 ]
Son, Hyoung Il [1 ,2 ]
机构
[1] Chonnam Natl Univ, Dept Convergence Biosyst Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
[2] Chonnam Natl Univ, Interdisciplinary Program IT Bio Convergence Syst, 77 Yongbong Ro, Gwangju 61186, South Korea
[3] Hyundai Robot Inc, Yongin 16891, South Korea
关键词
Variable flow rate control; Deep learning; Field experiments; Pulse width modulation; ALGORITHM; DESIGN; SYSTEM;
D O I
10.1007/s11119-021-09856-1
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
This study proposes a deep learning-based real-time variable flow control system using the segmentation of fruit trees in a pear orchard. The real-time flow rate control, undesired pressure fluctuation and theoretical modeling may differ from those in the real world. Therefore, two types of preliminary experiments were conducted to examine the linear relationship of the flow rate modeling. Through preliminary experiments, the parameters of the pulse width modulation (PWM) controller were optimized, and a field experiment was conducted to confirm the performance of the variable flow rate control system. The field test was conducted for three cases: all open, on/off control, and variable flow rate control, showing results of 56.15 (+/- 17.24)%, 68.95 (+/- 21.12)% and 57.33 (+/- 21.73)% for each control. The result revealed that the proposed system performed satisfactorily, showing that pesticide use and the risk of pesticide exposure could be reduced.
引用
收藏
页码:712 / 732
页数:21
相关论文
共 50 条
  • [41] A Deep Learning-Based System for Product Recognition in Intelligent Retail Environment
    Pietrini, Rocco
    Rossi, Luca
    Mancini, Adriano
    Zingaretti, Primo
    Frontoni, Emanuele
    Paolanti, Marina
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 371 - 382
  • [42] Deep Learning-Based Point Cloud Classification of Obstacles for Intelligent Vehicles
    Xu, Yiqi
    Wu, Dengke
    Zhou, Mengfei
    Yang, Jiafu
    WORLD ELECTRIC VEHICLE JOURNAL, 2025, 16 (02):
  • [43] Application research of deep learning-based BIM Technology in Intelligent Construction
    Tao, Liang
    Zou, Leirong
    Gao, Zhaohong
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 2249 - 2257
  • [44] Deep Learning-Based Inverse Modeling for Predictive Control
    Perez, Edgar Ademir Morales
    Iba, Hitoshi
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 956 - 961
  • [45] Deep Learning-Based Landmark Detection for Mobile Robot Outdoor Localization
    Nilwong, Sivapong
    Hossain, Delowar
    Kaneko, Shin-ichiro
    Capi, Genci
    MACHINES, 2019, 7 (02)
  • [46] Deep Learning-Based Rapid Flow Field Reconstruction Model with Limited Monitoring Point Information
    Wang, Ping
    Hu, Guangzhong
    Hu, Wenli
    Xue, Xiangdong
    Tao, Jing
    Wen, Huabin
    AEROSPACE, 2024, 11 (11)
  • [47] Deep Reinforcement Learning-based Traffic Signal Control
    Ruan, Junyun
    Tang, Jinzhuo
    Gao, Ge
    Shi, Tianyu
    Khamis, Alaa
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART MOBILITY, SM, 2023, : 21 - 26
  • [48] Deep learning-based algorithm for vehicle detection in intelligent transportation systems
    Linrun Qiu
    Dongbo Zhang
    Yuan Tian
    Najla Al-Nabhan
    The Journal of Supercomputing, 2021, 77 : 11083 - 11098
  • [49] Deep Reinforcement Learning-Based Multireconfigurable Intelligent Surface for MEC Offloading
    Qu, Long
    Huang, An
    Pan, Junqi
    Dai, Cheng
    Garg, Sahil
    Hassan, Mohammad Mehedi
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [50] A Deep Learning-Based Visual Map Generation for Mobile Robot Navigation
    Garcia-Pintos, Carlos A.
    Aldana-Murillo, Noe G.
    Ovalle-Magallanes, Emmanuel
    Martinez, Edgar
    ENG, 2023, 4 (02): : 1616 - 1634