A combined ultrasound and photoacoustic imaging platform for clinical research applications

被引:0
作者
Thompson, Weylan R. [1 ]
Lawrence, Dylan J. [1 ]
Brecht, Hans-Peter [1 ]
Ermilov, Sergey A. [1 ]
Ivanov, Vassili [1 ]
机构
[1] PhotoSound Technol Inc, 9511 Town Pk Dr, Houston, TX 77036 USA
来源
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2022 | 2022年 / 11960卷
基金
美国国家卫生研究院;
关键词
photoacoustic imaging; ultrasound imaging; multimodal imaging; parallel data acquisition; photosound;
D O I
10.1117/12.2610099
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present the continued development of a clinical ultrasound (US) imaging device with an enabled photoacoustic (PA) mode. The combined USPA imaging platform is designed around a compact US component capable of B-mode, M-mode, color Doppler, and pulsed wave Doppler US imaging with a 128 element US probe. The PA mode can support a 256 element PA probe over two 128-channel connectors with real-time 2D imaging at frame rates up to 20 Hz. PA signals are amplified by a 40 dB pre-amp and have an additional programmable gain of 6-51 dB; US mode signals bypass the pre-amp circuit and have a time gain compensation control up to 40 dB. USPA represents a multifunctional imaging platform that can produce quality anatomical and physiological images using the US modes and co-registered physiological and molecular imaging using the PA mode. The software development kit (SDK) released with the device allows for implementation of custom PA imaging algorithms and visualization. We demonstrate the USPA device's capabilities using a 5-14 MHz linear US probe to image phantoms simulating future clinical applications, such as blood oxygen saturation and vascular development.
引用
收藏
页数:9
相关论文
共 20 条
[1]   Ultrasound molecular imaging: Moving toward clinical translation [J].
Abou-Elkacem, Lotfi ;
Bachawal, Sunitha V. ;
Willmann, Juergen K. .
EUROPEAN JOURNAL OF RADIOLOGY, 2015, 84 (09) :1685-1693
[2]   A review of clinical photoacoustic imaging: Current and future trends [J].
Attia, Amalina Binte Ebrahim ;
Balasundaram, Ghayathri ;
Moothanchery, Mohesh ;
Dinish, U. S. ;
Bi, Renzhe ;
Ntziachristos, Vasilis ;
Olivo, Malini .
PHOTOACOUSTICS, 2019, 16
[3]   Quantitative photoacoustic estimates of intervascular blood oxygenation differences using linear unmixing [J].
Bench, C. ;
Cox, B. .
ANGLO-FRENCH PHYSICAL ACOUSTICS CONFERENCE (AFPAC) 2020, 2021, 1761
[4]   Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions [J].
Bench, Ciaran ;
Hauptmann, Andreas ;
Cox, Ben .
JOURNAL OF BIOMEDICAL OPTICS, 2020, 25 (08)
[5]   A literature review and novel theoretical approach on the optical properties of whole blood [J].
Bosschaart, Nienke ;
Edelman, Gerda J. ;
Aalders, Maurice C. G. ;
van Leeuwen, Ton G. ;
Faber, Dirk J. .
LASERS IN MEDICAL SCIENCE, 2014, 29 (02) :453-479
[6]   Photoacoustics for molecular imaging and therapy [J].
Emelianov, Stanislav Y. ;
Li, Pai-Chi ;
O'Donnell, Matthew .
PHYSICS TODAY, 2009, 62 (05) :34-39
[7]  
Ermilov S, 2010, SPIE
[8]   Role of Ultrasound and Photoacoustic Imaging in Photodynamic Therapy for Cancer [J].
Hester, Scott C. ;
Kuriakose, Maju ;
Nguyen, Christopher D. ;
Mallidi, Srivalleesha .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2020, 96 (02) :260-279
[9]   Real-time photoacoustic data acquisition with a thousand parallel channels at hundreds frames per second [J].
Ivanov, Vassili ;
Brecht, Hans Peter ;
Ermilov, Sergey A. .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2019, 2019, 10878
[10]   Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging [J].
Kim, Chulhong ;
Erpelding, Todd N. ;
Jankovic, Ladislav ;
Wang, Lihong V. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1955) :4644-4650