Visible, near-infrared dual-polarization lidar based on polarization cameras: system design, evaluation and atmospheric measurements

被引:5
作者
Kong, Zheng [1 ]
Yu, Jiheng [1 ]
Gong, Zhenfeng [1 ]
Hua, Dengxin [1 ,2 ]
Mei, Liang [1 ]
机构
[1] Dalian Univ Technol, Sch Optoelect Engn & Instrumentat Sci, Dalian 116024, Peoples R China
[2] Xian Univ Technol, Sch Mech & Precis Instrument Engn, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
DEPOLARIZATION-RATIO; EXTINCTION COEFFICIENT; AEROSOL CLASSIFICATION; SAHARAN DUST; DISTRIBUTIONS; ABSORPTION; RETRIEVAL; BARBADOS; SIGNALS;
D O I
10.1364/OE.463763
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A visible, near-infrared (VIS-NIR) dual-polarization lidar technique employing laser diodes and polarization cameras has been designed and implemented for all-day unattended field measurements of atmospheric aerosols. The linear volume depolarization ratios (LVDR) and the offset angles can be retrieved from four-directional polarized backscattering signals at wavelengths of 458 nm and 808 nm without additional optical components and sophisticated system adjustments. Evaluations on the polarization crosstalk of the polarization camera and the offset angle have been performed in detail. A rotating linear polarizer (RLP) method based on the Stokes-Mueller formalism has been proposed and demonstrated for measuring extinction ratios of the polarization camera, which can be used to eliminate the polarization crosstalk between different polarization signals. The offset angles can be online measured with a precision of 0.1 degrees, leading to negligible measurement errors on the LVDR. One-month statistical analysis revealed a small temporal variation of the offset angles, namely -0.13 degrees +/- 0.07 degrees at 458 nm and 0.33 degrees +/- 0.09 degrees at 808 nm, indicating good system stability for long-term measurement. Atmospheric measurements have been carried out to verify the system performance and investigate aerosol optical properties. The spectral characteristics of the aerosol extinction coefficient, the color ratio, the linear particle polarization ratio (LPDR) and the ratio of LPDR were retrieved and evaluated based on one-month continuous atmospheric measurements, from which different types of aerosols can be classified. The promising results showed great potential of employing the VIS-NIR dual-polarization lidar in characterizing aerosol optical properties, discriminating aerosol types and analyzing long-range aerosol transportation. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:28514 / 28533
页数:20
相关论文
共 50 条
  • [1] Calibration technique for polarization-sensitive lidars
    Alvarez, J. M.
    Vaughan, M. A.
    Hostetler, C. A.
    Hunt, W. H.
    Winker, D. M.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2006, 23 (05) : 683 - 699
  • [2] Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator
    Antonio Bravo-Aranda, Juan
    Belegante, Livio
    Freudenthaler, Volker
    Alados-Arboledas, Lucas
    Nicolae, Doina
    Jose Granados-Munoz, Maria
    Luis Guerrero-Rascado, Juan
    Amodeo, Aldo
    D'Amico, Giusseppe
    Engelmann, Ronny
    Pappalardo, Gelsomina
    Kokkalis, Panos
    Mamouri, Rodanthy
    Papayannis, Alex
    Navas-Guzman, Francisco
    Jose Olmo, Francisco
    Wandinger, Ulla
    Amato, Francesco
    Haeffelin, Martial
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (10) : 4935 - 4953
  • [3] Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature
    Behrendt, A
    Nakamura, T
    [J]. OPTICS EXPRESS, 2002, 10 (16): : 805 - 817
  • [4] Impacts of Aerosol-Radiation Interactions on the Wintertime Particulate Pollution under Different Synoptic Patterns in the Guanzhong Basin, China
    Bei, Naifang
    Li, Xia
    Wang, Qiyuan
    Liu, Suixin
    Wu, Jiarui
    Liang, Jiayi
    Liu, Lang
    Wang, Ruonan
    Li, Guohui
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2021, 38 (07) : 1141 - 1152
  • [5] Polarization lidar: Corrections of instrumental effects
    Biele, J
    Beyerle, G
    Baumgarten, G
    [J]. OPTICS EXPRESS, 2000, 7 (12): : 427 - 435
  • [6] Lidar depolarization ratio of atmospheric pollen at multiple wavelengths
    Bohlmann, Stephanie
    Shang, Xiaoxia
    Vakkari, Ville
    Giannakaki, Elina
    Leskinen, Ari
    Lehtinen, Kari E. J.
    Patsi, Sanna
    Komppula, Mika
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (09) : 7083 - 7097
  • [7] RAYLEIGH-SCATTERING CALCULATIONS FOR THE TERRESTRIAL ATMOSPHERE
    BUCHOLTZ, A
    [J]. APPLIED OPTICS, 1995, 34 (15): : 2765 - 2773
  • [8] Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples
    Burton, S. P.
    Ferrare, R. A.
    Hostetler, C. A.
    Hair, J. W.
    Rogers, R. R.
    Obland, M. D.
    Butler, C. F.
    Cook, A. L.
    Harper, D. B.
    Froyd, K. D.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (01) : 73 - 98
  • [9] Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols
    David, G.
    Miffre, A.
    Thomas, B.
    Rairoux, P.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 108 (01): : 197 - 216
  • [10] Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures
    Eck, T. F.
    Holben, B. N.
    Sinyuk, A.
    Pinker, R. T.
    Goloub, P.
    Chen, H.
    Chatenet, B.
    Li, Z.
    Singh, R. P.
    Tripathi, S. N.
    Reid, J. S.
    Giles, D. M.
    Dubovik, O.
    O'Neill, N. T.
    Smirnov, A.
    Wang, P.
    Xia, X.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115