Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations

被引:97
作者
Li, Q. [1 ]
He, Y. L. [1 ]
Wang, Y. [1 ]
Tao, W. Q. [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, State Key Lab Multiphase Flow, Xian 710049, Shaanxi, Peoples R China
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 05期
关键词
D O I
10.1103/PhysRevE.76.056705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.
引用
收藏
页数:19
相关论文
共 39 条
[11]   A novel thermal model for the lattice Boltzmann method in incompressible limit [J].
He, X ;
Chen, S ;
Doolen, GD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) :282-300
[12]   Modified Lattice Boltzmann method for compressible fluid simulations [J].
Hinton, F.L. ;
Rosenbluth, M.N. ;
Wong, S.K. ;
Lin-Liu, Y.R. ;
Miller, R.L. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (6 I) :1-061212
[13]   Efficient implementation of weighted ENO schemes [J].
Jiang, GS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (01) :202-228
[14]   Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio [J].
Kataoka, T ;
Tsutahara, M .
PHYSICAL REVIEW E, 2004, 69 (03) :035701-1
[15]   Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions [J].
Lallemand, P ;
Luo, LS .
PHYSICAL REVIEW E, 2003, 68 (03) :25
[16]   Hybrid finite-difference thermal lattice Boltzmann equation [J].
Lallemand, P ;
Luo, LS .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (1-2) :41-47
[17]   Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation [J].
Pareschi, L ;
Russo, G .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (01) :129-155
[18]   Simplified thermal lattice Boltzmann model for incompressible thermal flows [J].
Peng, Y ;
Shu, C ;
Chew, YT .
PHYSICAL REVIEW E, 2003, 68 (02) :8
[19]   Implicit-explicit schemes for BGK kinetic equations [J].
Pieraccini, Sandra ;
Puppo, Gabriella .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 32 (01) :1-28
[20]  
Qian Y. H., 1993, Journal of Scientific Computing, V8, P231, DOI 10.1007/BF01060932