Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations

被引:97
作者
Li, Q. [1 ]
He, Y. L. [1 ]
Wang, Y. [1 ]
Tao, W. Q. [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, State Key Lab Multiphase Flow, Xian 710049, Shaanxi, Peoples R China
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 05期
关键词
D O I
10.1103/PhysRevE.76.056705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.
引用
收藏
页数:19
相关论文
共 39 条
[1]   LATTICE BOLTZMANN THERMOHYDRODYNAMICS [J].
ALEXANDER, FJ ;
CHEN, S ;
STERLING, JD .
PHYSICAL REVIEW E, 1993, 47 (04) :R2249-R2252
[2]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[3]   LATTICE BOLTZMANN MODEL FOR SIMULATION OF MAGNETOHYDRODYNAMICS [J].
CHEN, SY ;
CHEN, HD ;
MARTINEZ, D ;
MATTHAEUS, W .
PHYSICAL REVIEW LETTERS, 1991, 67 (27) :3776-3779
[4]   THERMAL LATTICE BHATNAGAR-GROSS-KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC EQUATIONS [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICAL REVIEW E, 1994, 50 (04) :2776-2783
[5]   Two-Parameter Thermal Lattice BGK Model with a Controllable Prandtl Number [J].
Chen Y. ;
Ohashi H. ;
Akiyama M. .
Journal of Scientific Computing, 1997, 12 (2) :169-185
[6]   MULTIDIMENSIONAL UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS [J].
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 87 (01) :171-200
[7]   NUMERICAL-SIMULATION OF FREE CONVECTIVE FLOW USING THE LATTICE-BOLTZMANN SCHEME [J].
EGGELS, JGM ;
SOMERS, JA .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1995, 16 (05) :357-364
[8]   Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model [J].
Guo, Zhaoli ;
Zheng, Chuguang ;
Shi, Baochang ;
Zhao, T. S. .
PHYSICAL REVIEW E, 2007, 75 (03)
[9]   A coupled lattice BGK model for the Boussinesq equations [J].
Guo, ZL ;
Shi, BC ;
Zheng, CG .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (04) :325-342
[10]   An extrapolation method for boundary conditions in lattice Boltzmann method [J].
Guo, ZL ;
Zheng, CG ;
Shi, BC .
PHYSICS OF FLUIDS, 2002, 14 (06) :2007-2010