Entropy Estimation of Inverse Weibull Distribution under Adaptive Type-II Progressive Hybrid Censoring Schemes

被引:20
作者
Xu, Rong [1 ]
Gui, Wenhao [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 12期
关键词
entropy; adaptive type-II progressive hybrid censoring scheme; inverse Weibull distribution; maximum likelihood estimation; Bayes estimation; Lindley's approximation; BAYESIAN-ESTIMATION; PARAMETERS; MODEL;
D O I
10.3390/sym11121463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper discusses entropy estimations for two-parameter inverse Weibull distributions under adaptive type-II progressive hybrid censoring schemes. Estimations of entropy derived by maximum likelihood estimation method and Bayes estimation method are both considered. Different Bayes estimators using squared loss function, Linex loss function, general entropy loss function, and balanced loss function are derived. Numerical results are derived by Lindley's approximation method. Especially, the interval estimation of entropy is derived through maximum likelihood estimation method. To test the effectiveness of the estimations, simulation studies are conducted. These entropy estimation methods are illustrated and applied to analyze a real data set.
引用
收藏
页数:23
相关论文
共 27 条
[1]   Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach [J].
Ahmed, Essam A. .
JOURNAL OF APPLIED STATISTICS, 2014, 41 (04) :752-768
[2]   Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes [J].
AL Sobhi, Mashail M. ;
Soliman, Ahmed A. .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (02) :1180-1192
[3]  
[Anonymous], 1964, MATH THEORY COMMUNIC
[4]   BAYESIAN-APPROACH TO LIFE TESTING AND RELIABILITY ESTIMATION USING ASYMMETRIC LOSS FUNCTION [J].
BASU, AP ;
EBRAHIMI, N .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1991, 29 (1-2) :21-31
[5]   On optimal schemes in progressive censoring [J].
Burkschat, M ;
Cramer, E ;
Kamps, U .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (10) :1032-1036
[6]   AN ENGINEERING APPROACH TO BAYES ESTIMATION FOR THE WEIBULL DISTRIBUTION [J].
CALABRIA, R ;
PULCINI, G .
MICROELECTRONICS AND RELIABILITY, 1994, 34 (05) :789-802
[7]   Estimating the Entropy of a Weibull Distribution under Generalized Progressive Hybrid Censoring [J].
Cho, Youngseuk ;
Sun, Hokeun ;
Lee, Kyeongjun .
ENTROPY, 2015, 17 (01) :102-122
[8]   An Estimation of the Entropy for a Rayleigh Distribution Based on Doubly-Generalized Type-II Hybrid Censored Samples [J].
Cho, Youngseuk ;
Sun, Hokeun ;
Lee, Kyeongjun .
ENTROPY, 2014, 16 (07) :3655-3669
[9]   The generalized inverse Weibull distribution [J].
de Gusmao, Felipe R. S. ;
Ortega, Edwin M. M. ;
Cordeiro, Gauss M. .
STATISTICAL PAPERS, 2011, 52 (03) :591-619
[10]  
Elbatal I., 2014, APPL MATH SCI, V8, P3997, DOI DOI 10.12988/AMS.2014.44267