Multimodal sentiment analysis using hierarchical fusion with context modeling

被引:239
作者
Majumder, N. [1 ]
Hazarika, D. [2 ]
Gelbukh, A. [1 ]
Cambria, E. [3 ]
Poria, S. [3 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Comp, Mexico City, DF, Mexico
[2] Natl Univ Singapore, Sch Comp, Singapore, Singapore
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
关键词
Multimodal fusion; Sentiment analysis; EMOTION RECOGNITION;
D O I
10.1016/j.knosys.2018.07.041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities. On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual information from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate reduction) over currently used concatenation. The implementation of our method is publicly available in the form of open-source code.
引用
收藏
页码:124 / 133
页数:10
相关论文
共 55 条
[1]   Lexicon Generation for Emotion Detection from Text [J].
Bandhakavi, Anil ;
Wiratunga, Nirmalie ;
Massie, Stewart ;
Padmanabhan, Deepak .
IEEE INTELLIGENT SYSTEMS, 2017, 32 (01) :102-108
[2]   IEMOCAP: interactive emotional dyadic motion capture database [J].
Busso, Carlos ;
Bulut, Murtaza ;
Lee, Chi-Chun ;
Kazemzadeh, Abe ;
Mower, Emily ;
Kim, Samuel ;
Chang, Jeannette N. ;
Lee, Sungbok ;
Narayanan, Shrikanth S. .
LANGUAGE RESOURCES AND EVALUATION, 2008, 42 (04) :335-359
[3]  
Cambria E, 2018, AAAI CONF ARTIF INTE, P1795
[4]   Sentiment Analysis Is a Big Suitcase [J].
Cambria, Erik ;
Poria, Soujanya ;
Gelbukh, Alexander ;
Thelwall, Mike .
IEEE INTELLIGENT SYSTEMS, 2017, 32 (06) :74-80
[5]   Affective Computing and Sentiment Analysis [J].
Cambria, Erik .
IEEE INTELLIGENT SYSTEMS, 2016, 31 (02) :102-107
[6]  
Cambria E, 2010, INT CONF SIGN PROCES, P1279, DOI 10.1109/ICOSP.2010.5657072
[7]   Learning Community Embedding with Community Detection and Node Embedding on Graphs [J].
Cavallari, Sandro ;
Zheng, Vincent W. ;
Cai, Hongyun ;
Chang, Kevin Chen-Chuan ;
Cambria, Erik .
CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, :377-386
[8]  
Chaturvedi I., 2018, INF FUSION, V44
[9]   Bayesian network based extreme learning machine for subjectivity detection [J].
Chaturvedi, Iti ;
Ragusa, Edoardo ;
Gastaldo, Paolo ;
Zunino, Rodolfo ;
Cambria, Erik .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (04) :1780-1797
[10]   Multimodal human emotion/expression recognition [J].
Chen, LS ;
Huang, TS ;
Miyasato, T ;
Nakatsu, R .
AUTOMATIC FACE AND GESTURE RECOGNITION - THIRD IEEE INTERNATIONAL CONFERENCE PROCEEDINGS, 1998, :366-371