A three-layer PMMA electrophoresis microchip with Pt microelectrodes insulated by a thin film for contactless conductivity detection

被引:0
作者
Liu, Junshan [1 ]
Wang, Junyao [1 ]
Chen, Zuanguang [2 ]
Yu, Yong [3 ]
Yang, Xiujuan [2 ]
Zhang, Xianbin [1 ]
Xu, Zheng [1 ]
Liu, Chong [1 ]
机构
[1] Dalian Univ Technol, Key Lab Micro Nano Technol & Syst Liaoning Prov, Dalian 116023, Liaoning, Peoples R China
[2] Sun Yat Sen Univ, Sch Pharmaceut Sci, Guangzhou 510089, Guangdong, Peoples R China
[3] Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
CAPILLARY-ELECTROPHORESIS; FABRICATION; SYSTEM; POLYMERIZATION; ELECTRODES; DEVICES; CHIP;
D O I
10.1039/c0lc00341g
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A three-layer poly (methyl methacrylate) (PMMA) electrophoresis microchip integrated with Pt microelectrodes for contactless conductivity detection is presented. A 50 mu m-thick PMMA film is used as the insulating layer and placed between the channel plate (containing the microchannel) and the electrode plate (containing the microelectrode). The three-layer structure facilitates the achievement of a thin insulating layer, obviates the difficulty of integrating microelectrodes on a thin film, and does not compromise the integration of microchips. To overcome the thermal and chemical incompatibilities of polymers and photolithographic techniques, a modified lift-off process was developed to integrate Pt microelectrodes onto the PMMA substrate. A novel two-step bonding method was created to assemble the complete PMMA microchip. A low limit of detection of 1.25 mu g ml(-1) for Na(+) and high separation efficiency of 77 000 and 48 000 plates/m for Na(+) and K(+) were obtained when operating the detector at a low excitation frequency of 60 kHz.
引用
收藏
页码:969 / 973
页数:5
相关论文
共 29 条
  • [21] Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 1. Fundamentals
    Brito-Neto, JGA
    da Silva, JAF
    Blanes, L
    do Lago, CL
    ELECTROANALYSIS, 2005, 17 (13) : 1198 - 1206
  • [22] Novel microchip electrophoresis-contactless conductivity method for detection and characterization of extracellular vesicles enriched for exosomes and microvesicles
    Sun, Rui
    Liu, Yaping
    Huang, Hongri
    Wang, Huihuang
    Wang, Lisheng
    You, Hui
    BIOANALYSIS, 2022, 14 (24) : 1547 - 1561
  • [23] High performance separation of quaternary amines using microchip non-aqueous electrophoresis coupled with contactless conductivity detection
    Moreira, Roger Cardoso
    Lopes, Marilia Sousa
    Medeiros Junior, Iris
    Coltro, Wendell K. T.
    JOURNAL OF CHROMATOGRAPHY A, 2017, 1499 : 190 - 195
  • [24] Determination of scopolamine and butylscopolamine in beverages, urine and Buscopan® tablets samples using electrophoresis microchip with integrated contactless conductivity detection
    Santos, Hellen I.
    Pinheiro, Kemilly M. P.
    Richter, Eduardo M.
    Coltro, Wendell K. T.
    TALANTA, 2024, 266
  • [25] 3D-printed microchip electrophoresis device containing spiral electrodes for integrated capacitively coupled contactless conductivity detection
    Costa, Brenda M. C.
    Coelho, Aline G.
    Beauchamp, Michael J.
    Nielsen, Jacob B.
    Nordin, Gregory P.
    Woolley, Adam T.
    da Silva, Jose A. F.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2022, 414 (01) : 545 - 550
  • [26] Improvement of CZTSSe thin film solar cell by introducing a three-layer structure precursor
    Li, Jinze
    Shen, Honglie
    Wang, Wei
    Chen, Jieyi
    Shang, Huirong
    Li, Yufang
    Zhai, Zihao
    MATERIALS LETTERS, 2016, 172 : 90 - 93
  • [27] Sensitive simultaneous determination of three sulfanilamide artificial sweeters by capillary electrophoresis with on-line preconcentration and contactless conductivity detection
    Yang, Lirong
    Zhou, Shengli
    Xiao, Yuezhou
    Tang, Yufeng
    Xie, Tianyao
    FOOD CHEMISTRY, 2015, 188 : 446 - 451
  • [28] Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 2. Peak shape, stray capacitance, noise, and actual electronics
    Brito-Neto, JGA
    da Silva, JAF
    Blanes, L
    do Lago, CL
    ELECTROANALYSIS, 2005, 17 (13) : 1207 - 1214
  • [29] A new green approach to L-histidine and β-alanine analysis in dietary supplements using rapid and simple contactless conductivity detection integrated with high-resolution glass-microchip electrophoresis
    Pukles, Iva
    Pager, Csilla
    Sakac, Nikola
    Matasovic, Brunislav
    Kovac-Andric, Elvira
    Sarkanj, Bojan
    Samardzic, Mirela
    Budetic, Mateja
    Molnarova, Katarina
    Markovic, Dean
    Vesinger, Ana
    Jozanovic, Marija
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2024, 416 (15) : 3605 - 3617