Multiplicity of positive solutions for higher order Sturm-Liouville problems

被引:31
作者
Davis, JM [3 ]
Erbe, LH
Henderson, J
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[2] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
[3] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
multiple solutions; positive solutions; Sturm-Liouville problem; cone theory;
D O I
10.1216/rmjm/1008959675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the existence of an arbitrary number of positive solutions to the 2mth order Sturm-Liouville type problem (-1)(m)((2m))(y) (t) = f(t,y(t)), 0 less than or equal to t less than or equal to 1, alphay((2i))(0) - betay((2i+1))(0) = 0, 0 less than or equal to i less than or equal to m - 1, gammay((2i))(1) + deltay((2i+1))(1) = 0, 0 less than or equal to i less than or equal to m - 1, where f : [0, I] x [0, infinity) --> [0, infinity) is continuous. We accomplish this by making growth assumptions on f which we state in terms which generalize assumptions in recent works regarding superlinear and/or sublinear growth in f.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 50 条
  • [11] Positive Solutions to a Second-Order Sturm-Liouville Problem with Nonlocal Boundary Conditions
    Zhang, Feng
    Zhu, HuiJuan
    Wang, Fanglei
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (06)
  • [13] Types and Multiplicity of Solutions to Sturm-Liouville Boundary Value Problem
    Dobkevich, Maria
    Sadyrbaev, Felix
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2015, 20 (01) : 1 - 8
  • [14] Positive solutions of fourth-order Sturm-Liouville boundary value problems with changing sign nonlinearity
    Zhang, Xinguang
    Liu, Lishan
    Jiang, Jiqiang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) : 4764 - 4774
  • [15] A new existence result of positive solutions for the Sturm-Liouville boundary value problems
    Yang, G. C.
    Zhou, P. F.
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 29 : 52 - 56
  • [16] Two Positive Solutions for Superlinear Neumann Problems with a Complete Sturm-Liouville Operator
    Bonanno, Gabriele
    Iannizzotto, Antonio
    Marras, Monica
    [J]. JOURNAL OF CONVEX ANALYSIS, 2018, 25 (02) : 421 - 434
  • [17] Multiple Solutions for Systems of Sturm-Liouville Boundary Value Problems
    Graef, John R.
    Heidarkhani, Shapour
    Kong, Lingju
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1625 - 1640
  • [18] New results of positive solutions for the Sturm-Liouville problem
    Yang, G. C.
    Feng, H. B.
    [J]. BOUNDARY VALUE PROBLEMS, 2016,
  • [19] New results of positive solutions for the Sturm-Liouville problem
    GC Yang
    HB Feng
    [J]. Boundary Value Problems, 2016
  • [20] Some results on the fractional order Sturm-Liouville problems
    Ru, Yuanfang
    Wang, Fanglei
    An, Tianqing
    An, Yukun
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,