Penalized polygram regression

被引:1
作者
Jhong, Jae-Hwan [1 ]
Bak, Kwan-Young [2 ,3 ]
Koo, Ja-Yong [4 ]
机构
[1] ChungBuk Natl Univ, Dept Informat Stat, Cheongju, South Korea
[2] Sungshin Womens Univ, Sch Math Stat & Data Sci, Seoul, South Korea
[3] Sungshin Womens Univ, Data Sci Ctr, Seoul, South Korea
[4] Korea Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Barycentric coordinates; Coordinate descent algorithm; Minimaxity; Polygonal partitions; Triangulation; POLYNOMIAL SPLINES; TENSOR-PRODUCTS; BIVARIATE; REGULARIZATION; APPROXIMATION; CONVERGENCE; ASYMPTOTICS; SELECTION; SPARSITY;
D O I
10.1007/s42952-022-00181-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a study on regression function estimation over a bounded domain of arbitrary shapes based on triangulation and penalization techniques. A total variation type penalty is imposed to encourage fusion of adjacent triangles, which leads to a partition of the domain consisting of disjointed polygons. The proposed method provides a piecewise linear, and continuous estimator over a data adaptive polygonal partition of the domain. We adopt a coordinate decent algorithm to handle the non-separable structure of the penalty and investigate its convergence property. Regarding the asymptotic results, we establish an oracle type inequality and convergence rate of the proposed estimator. A numerical study is carried out to illustrate the performance of this method. An R software package polygram is available.
引用
收藏
页码:1161 / 1192
页数:32
相关论文
共 50 条
  • [41] Hierarchically penalized Cox regression with grouped variables
    Wang, S.
    Nan, B.
    Zhu, N.
    Zhu, J.
    BIOMETRIKA, 2009, 96 (02) : 307 - 322
  • [42] Degrees-of-freedom penalized piecewise regression
    Volz, Stefan
    Storath, Martin
    Weinmann, Andreas
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2025, 14 (01)
  • [43] Penalized regression with correlation-based penalty
    Tutz, Gerhard
    Ulbricht, Jan
    STATISTICS AND COMPUTING, 2009, 19 (03) : 239 - 253
  • [44] Autocovariance Function Estimation via Penalized Regression
    Liao, Lina
    Park, Cheolwoo
    Hannig, Jan
    Kang, Kee-Hoon
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (04) : 1041 - 1056
  • [45] Efficient Penalized Estimation for Linear Regression Model
    Mao, Guangyu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (07) : 1436 - 1449
  • [46] Penalized wavelets: Embedding wavelets into semiparametric regression
    Wand, M. P.
    Ormerod, J. T.
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 1654 - 1717
  • [47] LOCAL POLYNOMIAL AND PENALIZED TRIGONOMETRIC SERIES REGRESSION
    Huang, Li-Shan
    Chan, Kung-Sik
    STATISTICA SINICA, 2014, 24 (03) : 1215 - 1238
  • [48] ADMM for Penalized Quantile Regression in Big Data
    Yu, Liqun
    Lin, Nan
    INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (03) : 494 - 518
  • [49] S-Estimation for Penalized Regression Splines
    Tharmaratnam, Kukatharmini
    Claeskens, Gerda
    Croux, Christophe
    Saubian-Barrera, Matias
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (03) : 609 - 625
  • [50] Hierarchically penalized quantile regression with multiple responses
    Jongkyeong Kang
    Seung Jun Shin
    Jaeshin Park
    Sungwan Bang
    Journal of the Korean Statistical Society, 2018, 47 : 471 - 481