Penalized polygram regression

被引:1
|
作者
Jhong, Jae-Hwan [1 ]
Bak, Kwan-Young [2 ,3 ]
Koo, Ja-Yong [4 ]
机构
[1] ChungBuk Natl Univ, Dept Informat Stat, Cheongju, South Korea
[2] Sungshin Womens Univ, Sch Math Stat & Data Sci, Seoul, South Korea
[3] Sungshin Womens Univ, Data Sci Ctr, Seoul, South Korea
[4] Korea Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Barycentric coordinates; Coordinate descent algorithm; Minimaxity; Polygonal partitions; Triangulation; POLYNOMIAL SPLINES; TENSOR-PRODUCTS; BIVARIATE; REGULARIZATION; APPROXIMATION; CONVERGENCE; ASYMPTOTICS; SELECTION; SPARSITY;
D O I
10.1007/s42952-022-00181-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a study on regression function estimation over a bounded domain of arbitrary shapes based on triangulation and penalization techniques. A total variation type penalty is imposed to encourage fusion of adjacent triangles, which leads to a partition of the domain consisting of disjointed polygons. The proposed method provides a piecewise linear, and continuous estimator over a data adaptive polygonal partition of the domain. We adopt a coordinate decent algorithm to handle the non-separable structure of the penalty and investigate its convergence property. Regarding the asymptotic results, we establish an oracle type inequality and convergence rate of the proposed estimator. A numerical study is carried out to illustrate the performance of this method. An R software package polygram is available.
引用
收藏
页码:1161 / 1192
页数:32
相关论文
共 50 条
  • [21] Group penalized expectile regression
    Ouhourane, Mohamed
    Oualkacha, Karim
    Yang, Archer Yi
    STATISTICAL METHODS AND APPLICATIONS, 2024,
  • [22] Penalized wavelet monotone regression
    Antoniadis, Anestis
    Bigot, Jeremie
    Gijbels, Irene
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (16) : 1608 - 1621
  • [23] Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure
    Allegrini, Franco
    Braga, Jez W. B.
    Moreira, Alessandro C. O.
    Olivieri, Alejandro C.
    ANALYTICA CHIMICA ACTA, 2018, 1011 : 20 - 27
  • [24] Penalized regression with individual deviance effects
    Perperoglou, Aris
    Eilers, Paul H. C.
    COMPUTATIONAL STATISTICS, 2010, 25 (02) : 341 - 361
  • [25] Seemingly unrelated penalized regression models
    Ghasemi, Adel
    Najarzadeh, Dariush
    Khazaei, Mojtaba
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [26] On knot placement for penalized spline regression
    Yao, Fang
    Lee, Thomas C. M.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (03) : 259 - 267
  • [27] Spatiotemporal Exposure Prediction with Penalized Regression
    Nathan A. Ryder
    Joshua P. Keller
    Journal of Agricultural, Biological and Environmental Statistics, 2023, 28 : 260 - 278
  • [28] Support vector regression with penalized likelihood
    Uemoto, Takumi
    Naito, Kanta
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 174
  • [29] Log-penalized linear regression
    Sweetkind-Singer, JA
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 286 - 286
  • [30] On knot placement for penalized spline regression
    Fang Yao
    Thomas C. M. Lee
    Journal of the Korean Statistical Society, 2008, 37 : 259 - 267