Penalized polygram regression

被引:1
|
作者
Jhong, Jae-Hwan [1 ]
Bak, Kwan-Young [2 ,3 ]
Koo, Ja-Yong [4 ]
机构
[1] ChungBuk Natl Univ, Dept Informat Stat, Cheongju, South Korea
[2] Sungshin Womens Univ, Sch Math Stat & Data Sci, Seoul, South Korea
[3] Sungshin Womens Univ, Data Sci Ctr, Seoul, South Korea
[4] Korea Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Barycentric coordinates; Coordinate descent algorithm; Minimaxity; Polygonal partitions; Triangulation; POLYNOMIAL SPLINES; TENSOR-PRODUCTS; BIVARIATE; REGULARIZATION; APPROXIMATION; CONVERGENCE; ASYMPTOTICS; SELECTION; SPARSITY;
D O I
10.1007/s42952-022-00181-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a study on regression function estimation over a bounded domain of arbitrary shapes based on triangulation and penalization techniques. A total variation type penalty is imposed to encourage fusion of adjacent triangles, which leads to a partition of the domain consisting of disjointed polygons. The proposed method provides a piecewise linear, and continuous estimator over a data adaptive polygonal partition of the domain. We adopt a coordinate decent algorithm to handle the non-separable structure of the penalty and investigate its convergence property. Regarding the asymptotic results, we establish an oracle type inequality and convergence rate of the proposed estimator. A numerical study is carried out to illustrate the performance of this method. An R software package polygram is available.
引用
收藏
页码:1161 / 1192
页数:32
相关论文
共 50 条
  • [1] Penalized polygram regression
    Jae-Hwan Jhong
    Kwan-Young Bak
    Ja-Yong Koo
    Journal of the Korean Statistical Society, 2022, 51 : 1161 - 1192
  • [2] Penalized expectile regression: an alternative to penalized quantile regression
    Lina Liao
    Cheolwoo Park
    Hosik Choi
    Annals of the Institute of Statistical Mathematics, 2019, 71 : 409 - 438
  • [3] Penalized expectile regression: an alternative to penalized quantile regression
    Liao, Lina
    Park, Cheolwoo
    Choi, Hosik
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (02) : 409 - 438
  • [4] Penalized isotonic regression
    Wu, Jiwen
    Meyer, Mary C.
    Opsomer, Jean D.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 161 : 12 - 24
  • [5] Penalized Functional Regression
    Goldsmith, Jeff
    Bobb, Jennifer
    Crainiceanu, Ciprian M.
    Caffo, Brian
    Reich, Daniel
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 830 - 851
  • [6] Penalized Euclidean distance regression
    Vasiliu, Daniel
    Dey, Tanujit
    Dryden, Ian L.
    STAT, 2018, 7 (01):
  • [7] BIVARIATE PENALIZED SPLINES FOR REGRESSION
    Lai, Ming-Jun
    Wang, Li
    STATISTICA SINICA, 2013, 23 (03) : 1399 - 1417
  • [8] PENALIZED LIKELIHOOD FUNCTIONAL REGRESSION
    Du, Pang
    Wang, Xiao
    STATISTICA SINICA, 2014, 24 (02) : 1017 - 1041
  • [9] Hierarchically penalized quantile regression
    Kang, Jongkyeong
    Bang, Sungwan
    Jhun, Myoungshic
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 340 - 356
  • [10] Group penalized quantile regression
    Ouhourane, Mohamed
    Yang, Yi
    Benedet, Andrea L.
    Oualkacha, Karim
    STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (03): : 495 - 529