Locally Conformal Hermitian Metrics on Complex Non-Kahler Manifolds

被引:19
作者
Angella, Daniele [1 ,2 ]
Ugarte, Luis [3 ]
机构
[1] Univ Zaragoza, Dept Matemat, IUMA, Ist Nazl Alta Matemat, Campus Plaza San Francisco, E-50009 Zaragoza, Spain
[2] Scuola Normale Super Pisa, Coll Puteano, Ctr Ric Matemat Ennio de Giorgi, Piazza Cavalieri 3, I-56126 Pisa, Italy
[3] Univ Zaragoza, Dept Matemat, IUMA, Campus Plaza San Francisco, E-50009 Zaragoza, Spain
关键词
Complex manifold; locally conformal Kahler; balanced metric; locally conformal balanced; holomorphic-tamed; partial derivative partial derivative-Lemma; nilmanifold; solvmanifold; DOLBEAULT COHOMOLOGY; SYMPLECTIC STRUCTURES; VANISHING THEOREMS; COMPACT; INVARIANT; SOLVMANIFOLDS; EXISTENCE;
D O I
10.1007/s00009-015-0586-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study complex non-Kahler manifolds with Hermitian metrics being locally conformal to metrics with special cohomological properties. In particular, we provide examples where the existence of locally conformal holomorphic-tamed structures implies the existence of locally conformal Kahler metrics, too.
引用
收藏
页码:2105 / 2145
页数:41
相关论文
共 85 条
[1]  
Alessandrini L, 1996, LECT NOTES PURE APPL, V173, P1
[2]   Vanishing theorems on Hermitian manifolds [J].
Alexandrov, B ;
Ivanov, S .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (03) :251-265
[3]  
Angella D., ARXIV 1212 5708V3 MA
[4]  
Angella D., MATH UNIVER IN PRESS
[5]   Hodge theory for twisted differentials [J].
Angella, Daniele ;
Kasuya, Hisashi .
COMPLEX MANIFOLDS, 2014, 1 (01) :64-85
[6]   On Bott-Chern cohomology of compact complex surfaces [J].
Angella, Daniele ;
Dloussky, Georges ;
Tomassini, Adriano .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (01) :199-217
[7]   Degree of non-Kahlerianity for 6-dimensional nilmanifolds [J].
Angella, Daniele ;
Franzini, Maria Giovanna ;
Rossi, Federico Alberto .
MANUSCRIPTA MATHEMATICA, 2015, 148 (1-2) :177-211
[8]   The Cohomologies of the Iwasawa Manifold and of Its Small Deformations [J].
Angella, Daniele .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) :1355-1378
[9]  
Angella D, 2013, INVENT MATH, V192, P71, DOI 10.1007/s00222-012-0406-3
[10]  
Angella D, 2011, J SYMPLECT GEOM, V9, P403