A Simple Training Strategy for Graph Autoencoder

被引:10
作者
Wang, Yingfeng [1 ]
Xu, Biyun [2 ]
Kwak, Myungjae [1 ]
Zeng, Xiaoqin [3 ]
机构
[1] Middle Georgia State Univ, 100 Univ Pkwy, Macon, GA 31206 USA
[2] Beijing Kubao Technol Co, 1089 Huihe South St, Beijing, Peoples R China
[3] Hohai Univ, 1 Xikang Rd, Nanjing, Jiangsu, Peoples R China
来源
ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING | 2018年
基金
美国国家科学基金会;
关键词
Autoencoder; Graph Convolutional Network; Perturbation; Training Algorithm;
D O I
10.1145/3383972.3383985
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Graph autoencoder can map graph data into a low-dimensional space. It is a powerful graph embedding method applied in graph analytics to reduce the computational cost. The training algorithm of a graph autoencoder searches the weight setting for preserving most graph information of the graph data with reduced dimensionality. This paper presents a simple training strategy, which can improve the training performance without significantly increasing time complexity. This strategy can flexibly fit many existing training algorithms. The experimental results confirm the effectiveness of this strategy.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 2008, ICML 08, DOI 10.1145/1390156.1390294
[2]   A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications [J].
Cai, HongYun ;
Zheng, Vincent W. ;
Chang, Kevin Chen-Chuan .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (09) :1616-1637
[3]  
Cao SS, 2016, AAAI CONF ARTIF INTE, P1145
[4]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[5]  
Giles C. L., 1998, Digital 98 Libraries. Third ACM Conference on Digital Libraries, P89, DOI 10.1145/276675.276685
[6]   Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules [J].
Gomez-Bombarelli, Rafael ;
Wei, Jennifer N. ;
Duvenaud, David ;
Hernandez-Lobato, Jose Miguel ;
Sanchez-Lengeling, Benjamin ;
Sheberla, Dennis ;
Aguilera-Iparraguirre, Jorge ;
Hirzel, Timothy D. ;
Adams, Ryan P. ;
Aspuru-Guzik, Alan .
ACS CENTRAL SCIENCE, 2018, 4 (02) :268-276
[7]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[8]   Graph embedding techniques, applications, and performance: A survey [J].
Goyal, Palash ;
Ferrara, Emilio .
KNOWLEDGE-BASED SYSTEMS, 2018, 151 :78-94
[9]  
Haykin S., 2008, NEURAL NETWORKS LEAR, V3rd
[10]  
Kingma D. P., P 3 INT C LEARN REPR