Attractors for a Nonautonomous Lienard Equation

被引:0
作者
Anguiano, Maria [1 ]
机构
[1] Univ Seville, Dept Ecuaciones Diferenciales & Anal Numer, E-41080 Seville, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 02期
关键词
Lienard equation; nonautonomous equation; pullback attractor; uniform attractor; Hausdorff dimension; PULLBACK ATTRACTORS; SYSTEMS; LOCALIZATION;
D O I
10.1142/S0218127415500327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of pullback and uniform attractors for a nonautonomous Lienard equation. The relation among these attractors is also discussed. After that, we consider that the Lienard equation includes forcing terms which belong to a class of functions extending periodic and almost periodic functions recently introduced by Kloeden and Rodrigues [2011]. Finally, we estimate the Hausdorff dimension of the pullback attractor. We illustrate these results with a numerical simulation: we present a simulation showing the pullback attractor for the nonautonomous Van der Pol equation, an important special case of the nonautonomous Lienard equation.
引用
收藏
页数:11
相关论文
共 34 条
[31]  
van der Pol B, 1928, PHILOS MAG, V6, P763
[32]   ATTRACTORS OF PERIODIC PROCESSES AND ESTIMATES OF THEIR DIMENSION [J].
VISHIK, MI ;
CHEPYZHOV, VV .
MATHEMATICAL NOTES, 1995, 57 (1-2) :127-140
[33]  
YANQIAN Y, 1984, THEORY LIMIT CYCLES
[34]  
Zeghdoudi H, 2013, EUR J PURE APPL MATH, V6, P126