Quadratic metric-affine gravity

被引:35
|
作者
Vassiliev, D [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
Yang-Mills equation; instanton; gravity; torsion;
D O I
10.1002/andp.200410118
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider spacetime to be a connected real 4-manifold equipped with a Lorentzian metric and an affine connection. The 10 independent components of the (symmetric) metric tensor and the 64 connection coefficients are the unknowns of our theory. We introduce an action which is (purely) quadratic in curvature and study the resulting system of Euler-Lagrange equations. In the first part of the paper we look for Riemannian solutions, i.e. solutions whose connection is Levi-Civita. We find two classes of Riemannian solutions: 1) Einstein spaces, and 2) spacetimes with pp-wave metric of parallel Ricci curvature. We prove that for a generic quadratic action these are the only Riemannian solutions. In the second part of the paper we look for non-Riemannian solutions. We define the notion of a "Weyl pseudoinstanton" (metric compatible spacetime whose curvature is purely of Weyl type) and prove that a Weyl pseudoinstanton is a solution of our field equations. Using the pseudoinstanton approach we construct explicitly a non-Riemannian solution which is a wave of torsion in a spacetime with Minkowski metric. We discuss the possibility of using this non-Riemannian solution as a mathematical model for the neutrino. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:231 / 252
页数:22
相关论文
共 50 条
  • [21] Comment on ?A comment on metric vs metric-affine gravity?
    Olmo, Gonzalo J.
    Porfirio, P. J.
    NUCLEAR PHYSICS B, 2023, 987
  • [22] Vector stability in quadratic metric-affine theories
    Jimenez-Cano, Alejandro
    Torralba, Francisco Jose Maldonado
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (09):
  • [23] Metric-affine bumblebee gravity: classical aspects
    Adrià Delhom
    J. R. Nascimento
    Gonzalo J. Olmo
    A. Yu. Petrov
    Paulo J. Porfírio
    The European Physical Journal C, 2021, 81
  • [24] Electroweak vacuum decay in metric-affine gravity
    Gialamas, Ioannis D.
    Veermae, Hardi
    PHYSICS LETTERS B, 2023, 844
  • [25] The Perfect Hyperfluid of Metric-Affine Gravity: the foundation
    Iosifidis, Damianos
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (04):
  • [26] Interiors of Terrestrial Planets in Metric-Affine Gravity
    Kozak, Aleksander
    Wojnar, Aneta
    UNIVERSE, 2022, 8 (01)
  • [27] Metric-Affine Gravity and the Geometric Nature of Matter
    Fasihi-Ramandi, Ghodratallah
    Azami, Shahroud
    Pirhadi, Vahid
    GRAVITATION & COSMOLOGY, 2022, 28 (02): : 102 - 107
  • [28] Gravitational waves in metric-affine gravity theory
    Jimenez-Cano, Alejandro
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2021, 103 (02)
  • [29] METRIC-AFFINE SCALE-COVARIANT GRAVITY
    POBERII, EA
    GENERAL RELATIVITY AND GRAVITATION, 1994, 26 (10) : 1011 - 1054
  • [30] Cosmological perturbation theory in metric-affine gravity
    Aoki, Katsuki
    Bahamonde, Sebastian
    Valcarcel, Jorge Gigante
    Gorji, Mohammad Ali
    PHYSICAL REVIEW D, 2024, 110 (02)