Nanocrystalline Li-Al-Mn-Si Foil as Reversible Li Host: Electronic Percolation and Electrochemical Cycling Stability

被引:50
作者
Fan, Huimin [1 ,2 ]
Chen, Bo [1 ,5 ]
Li, Sa [1 ,2 ]
Yu, Yue [1 ,2 ]
Xu, Hui [1 ,2 ]
Jiang, Mengwen [1 ,2 ]
Huang, Yunhui [1 ,2 ]
Li, Ju [3 ,4 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China
[2] Tongji Univ, Inst New Energy Vehicles, Shanghai 201804, Peoples R China
[3] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[5] Tongji Univ, Minist Educ, Key Lab Performance Evolut & Control Engn Struct, 1239 Siping Rd, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanoprecipitates; prelithiation; chemomechanical shock; ultrananocrystalline; porosity; lithiation/delithiation ductility; ION BATTERIES; GRAIN-GROWTH; PRELITHIATION; ANODE;
D O I
10.1021/acs.nanolett.9b03626
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
When a metallic foil (Li metal or LixAl) with initial Li inventory (LiInv) is used as the anode in lithium-ion batteries, its metallurgical damage state in the presence of organic liquid electrolyte and cycling electrochemical potential is of great interest. While LixAl foil operates at a voltage that eliminates Li-BCC dendrite, the state-of-health (SOH) of LixAl anode can still degrade quickly in full-cell cycling. To analyze the causes, we decompose SOH = SOHe x SOHi x LiInv, where SOHe is SOH of electronic percolation within the anode, SOHi is SOH of Li percolation from cathode to the anode interior, and LiInv is the amount of cyclable lithium in a full cell, all normalized such that 1 means perfectly healthy, and 0 means dead. Any of the three (SOHe, SOHi, LiInv) dropping to zero would mean death of the full cell. Considering the poor performance of pure Al foil due to rapid drop in LiInv, we employed a mechanical prelithiation (MP) method to make LiInv >1 initially. The chemomechanical shock from MP creates an ultrananocrystalline LiAI layer with grain size 10-30 nm on top of unreacted Al. We then monitor SOHe evolution of the anode foil by measuring the in-plane electronic conductance in situ. We find that small additions of Mn or Si into Al induce nanoprecipitates Zener pinning, and the resulting denser grain boundary (GB) network before MP significantly reduces foil porosity after MP, delays gross foil fracture, and improves SOHe in subsequent cycling. Microstructural analysis reveals that the refined grain size of foil before MP relieves stress and reduces the chance of forming electronically isolated dead grain cluster due to cracking and invasion of electrolyte and solid-electrolyte interphase (SEI). By maintaining good electronic percolation, binder-free LixAlMnSi anode demonstrates an order-of-magnitude more stable SOHe and better electrochemical cycling performance than LixAl anode.
引用
收藏
页码:896 / 904
页数:9
相关论文
共 26 条
[1]   Scalable process for application of stabilized lithium metal powder in Li-ion batteries [J].
Ai, Guo ;
Wang, Zhihui ;
Zhao, Hui ;
Mao, Wenfeng ;
Fu, Yanbao ;
Yi, Ran ;
Gao, Yue ;
Battaglia, Vincent ;
Wang, Donghai ;
Lopatin, Sergey ;
Liu, Gao .
JOURNAL OF POWER SOURCES, 2016, 309 :33-41
[2]   Grain boundary complexions [J].
Cantwell, Patrick R. ;
Tang, Ming ;
Dillon, Shen J. ;
Luo, Jian ;
Rohrer, Gregory S. ;
Harmer, Martin P. .
ACTA MATERIALIA, 2014, 62 :1-48
[3]   Ambient-Air Stable Lithiated Anode for Rechargeable Li-Ion Batteries with High Energy Density [J].
Cao, Zeyuan ;
Xu, Pengyu ;
Zhai, Haowei ;
Du, Sicen ;
Mandal, Jyotirmoy ;
Dontigny, Martin ;
Zaghib, Karim ;
Yang, Yuan .
NANO LETTERS, 2016, 16 (11) :7235-7240
[4]   Prelithiation of Silicon-Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP) [J].
Forney, Michael W. ;
Ganter, Matthew J. ;
Staub, Jason W. ;
Ridgley, Richard D. ;
Landi, Brian J. .
NANO LETTERS, 2013, 13 (09) :4158-4163
[5]   Numerical study of grain boundary effect on Li+ effective diffusivity and intercalation-induced stresses in Li-ion battery active materials [J].
Han, Sangwoo ;
Park, Jonghyun ;
Lu, Wei ;
Sastry, Ann Marie .
JOURNAL OF POWER SOURCES, 2013, 240 :155-167
[6]   Full-Cell Cycling of a Self-Supporting Aluminum Foil Anode with a Phosphate Conversion Coating [J].
Jiang, Mengwen ;
Yu, Yue ;
Fan, Huimin ;
Xu, Hui ;
Zheng, Yuheng ;
Huang, Yunhui ;
Li, Sa ;
Li, Ju .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (17) :15656-15661
[7]   The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes [J].
Kasnatscheew, J. ;
Evertz, M. ;
Streipert, B. ;
Wagner, R. ;
Kloepsch, R. ;
Vortmann, B. ;
Hahn, H. ;
Nowak, S. ;
Amereller, M. ;
Gentschev, A-C. ;
Lamp, P. ;
Winter, M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (05) :3956-3965
[8]   Changing Established Belief on Capacity Fade Mechanisms: Thorough Investigation of LiNi1/3Co1/3Mn1/3O2 (NCM111) under High Voltage Conditions [J].
Kasnatscheew, Johannes ;
Evertz, Marco ;
Streipert, Benjamin ;
Wagner, Ralf ;
Nowak, Sascha ;
Laskovic, Isidora Cekic ;
Winter, Martin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (03) :1521-1529
[9]   Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells [J].
Kim, Hye Jin ;
Choi, Sunghun ;
Lee, Seung Jong ;
Seo, Myung Won ;
Lee, Jae Goo ;
Deniz, Erhan ;
Lee, Yong Ju ;
Kim, Eun Kyung ;
Choi, Jang Wook .
NANO LETTERS, 2016, 16 (01) :282-288
[10]   A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors [J].
Kim, Minho ;
Xu, Fan ;
Lee, Jin Hong ;
Jung, Cheolsoo ;
Hong, Soon Man ;
Zhang, Q. M. ;
Koo, Chong Min .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (26) :10029-10033