Structural stability and artificial buckling modes in topology optimization

被引:30
作者
Dalklint, Anna [1 ]
Wallin, Mathias [1 ]
Tortorelli, Daniel A. [2 ,3 ]
机构
[1] Lund Univ, Div Solid Mech, Box 118, SE-22100 Lund, Sweden
[2] Lawrence Livermore Natl Lab, Ctr Design & Optimizat, Livermore, CA USA
[3] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL USA
基金
瑞典研究理事会;
关键词
Topology optimization; Eigenvalue problem; Stability; Nonlinear elasticity; Artificial buckling modes; Energy transition; CONTINUUM STRUCTURES; DESIGN;
D O I
10.1007/s00158-021-03012-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton's method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples.
引用
收藏
页码:1751 / 1763
页数:13
相关论文
共 36 条
[1]  
Bendsoe MP., 2003, TOPOLOGY OPTIMIZATIO
[2]  
Bendsoe MP., 1989, STRUCTURAL OPTIMIZAT, V1, P193, DOI [DOI 10.1007/BF01650949, 10.1007/BF01650949]
[3]   LINEAR AND NON-LINEAR STABILITY ANALYSIS OF CYLINDRICAL-SHELLS [J].
BRENDEL, B ;
RAMM, E .
COMPUTERS & STRUCTURES, 1980, 12 (04) :549-558
[4]   Discussion on some convergence problems in buckling optimisation [J].
Bruyneel, M. ;
Colson, B. ;
Remouchamps, A. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2008, 35 (02) :181-186
[5]  
Chin, 2016, 57 AIAA ASCE AHS ASC, P0939
[6]  
Crisfield M.A., 1993, Non-Linear Finite Element Analysis of Solids and Structures, V1
[7]   Eigenfrequency constrained topology optimization of finite strain hyperelastic structures [J].
Dalklint, Anna ;
Wallin, Mathias ;
Tortorelli, Daniel A. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (06) :2577-2594
[8]   Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps [J].
Du, Jianbin ;
Olhoff, Niels .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2007, 34 (02) :91-110
[9]   Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver [J].
Dunning, Peter D. ;
Ovtchinnikov, Evgueni ;
Scott, Jennifer ;
Kim, H. Alicia .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (12) :1029-1053
[10]   Towards solving large-scale topology optimization problems with buckling constraints at the cost of linear analyses [J].
Ferrari, Federico ;
Sigmund, Ole .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 363