The qc Yamabe problem on non-spherical quaternionic contact manifolds

被引:4
作者
Ivanov, Stefan [1 ,2 ]
Petkov, Alexander [1 ,3 ]
机构
[1] Univ Sofia, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
[2] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Block 8, BU-1113 Sofia, Bulgaria
[3] Univ Vienna, Fac Math, Inst Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 118卷
关键词
Quaternionic contact structures; qc Yamabe constant; qc Yamabe functional; Asymptotic expansion; SCALAR CURVATURE; HEISENBERG-GROUP; CR; CONJECTURE; EQUATIONS; CONSTANT; METRICS; SPACES;
D O I
10.1016/j.matpur.2018.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the qc Yamabe problem has a solution on any compact qc manifold which is non-locally qc equivalent to the standard 3-Sasakian sphere. Namely, it is proved that on a compact non-locally spherical qc manifold there exists a qc conformal qc structure with constant qc scalar curvature. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:44 / 81
页数:38
相关论文
共 31 条