Positive solutions for a singular fractional nonlocal boundary value problem

被引:4
作者
Zhang, Luyao [1 ]
Sun, Zhongmin [2 ]
Hao, Xinan [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
[2] Weifang Engineer Vocat Coll, Weifang, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Positive solution; Singular; Infinite-point fractional boundary condition; Fixed point index; DIFFERENTIAL-EQUATIONS; UNIQUENESS; EXISTENCE; SYSTEM; MODEL;
D O I
10.1186/s13662-018-1844-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a singular fractional differential equation with an infinite-point fractional boundary condition, where the nonlinearity f (t, x) may be singular at x = 0, and g(t) may also have singularities at t = 0 or t = 1. We establish the existence of positive solutions using the fixed point index theory in cones.
引用
收藏
页数:8
相关论文
共 38 条
[1]   New uniqueness results for boundary value problem of fractional differential equation [J].
Cui, Yujun ;
Ma, Wenjie ;
Sun, Qiao ;
Su, Xinwei .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (01) :31-39
[2]   Uniqueness of solution for boundary value problems for fractional differential equations [J].
Cui, Yujun .
APPLIED MATHEMATICS LETTERS, 2016, 51 :48-54
[3]  
Deimling K., 1985, Nonlinear functional analysis, DOI DOI 10.1007/978-3-662-00547-7
[4]   Coercive nonlocal elements in fractional differential equations [J].
Goodrich, Christopher S. .
POSITIVITY, 2017, 21 (01) :377-394
[5]  
Guo D., 1988, NONLINEAR PROBLEMS A
[6]   Existence of positive solutions for singular higher-order fractional differential equations with infinite-point boundary conditions [J].
Guo, Limin ;
Liu, Lishan ;
Wu, Yonghong .
BOUNDARY VALUE PROBLEMS, 2016,
[7]   Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions [J].
Guo, Limin ;
Liu, Lishan ;
Wu, Yonghong .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (05) :635-650
[8]   Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval [J].
Hao, Xinan ;
Sun, Hui ;
Liu, Lishan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6984-6996
[9]   Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions [J].
Hao, Xinan ;
Wang, Huaqing .
OPEN MATHEMATICS, 2018, 16 :581-596
[10]   Multiple positive solutions for a system of impulsive integral boundary value problems with sign-changing nonlinearities [J].
Hao, Xinan ;
Zuo, Mingyue ;
Liu, Lishan .
APPLIED MATHEMATICS LETTERS, 2018, 82 :24-31