Time-reversal-symmetry breaking in circuit-QED-based photon lattices

被引:323
作者
Koch, Jens [1 ]
Houck, Andrew A. [2 ]
Le Hur, Karyn [1 ]
Girvin, S. M. [1 ]
机构
[1] Yale Univ, Dept Phys & Appl Phys, POB 208120, New Haven, CT 06520 USA
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 04期
基金
美国国家科学基金会;
关键词
MANY-BODY PHENOMENA; HUBBARD-MODEL; HEISENBERG-ANTIFERROMAGNET; OPTICAL LATTICES; MAGNETIC-FIELDS; GROUND-STATES; QUANTUM; KAGOME; LOCALIZATION; ARRAYS;
D O I
10.1103/PhysRevA.82.043811
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Breaking time-reversal symmetry is a prerequisite for accessing certain interesting many-body states such as fractional quantum Hall states. For polaritons, charge neutrality prevents magnetic fields from providing a direct symmetry-breaking mechanism and, similar to the situation in ultracold atomic gases, an effective magnetic field has to be synthesized. We show that in the circuit-QED architecture, this can be achieved by inserting simple superconducting circuits into the resonator junctions. In the presence of such coupling elements, constant parallel magnetic and electric fields suffice to break time-reversal symmetry. We support these theoretical predictions with numerical simulations for realistic sample parameters, specify general conditions under which time reversal is broken, and discuss the application to chiral Fock-state transfer, an on-chip circulator, and tunable band structure for the Kagome lattice.
引用
收藏
页数:18
相关论文
共 75 条
[1]   Quantum fluctuations, temperature, and detuning effects in solid-light systems [J].
Aichhorn, Markus ;
Hohenadler, Martin ;
Tahan, Charles ;
Littlewood, Peter B. .
PHYSICAL REVIEW LETTERS, 2008, 100 (21)
[2]   Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays [J].
Angelakis, Dimitris G. ;
Santos, Marcelo Franca ;
Bose, Sougato .
PHYSICAL REVIEW A, 2007, 76 (03)
[3]  
[Anonymous], 2000, QUANTUM PHASE TRANSI
[4]  
[Anonymous], 2004, MICROWAVE ENG
[5]   LOCALIZATION OF CHARGED QUANTUM PARTICLES IN A STATIC RANDOM MAGNETIC-FIELD [J].
ARONOV, AG ;
MIRLIN, AD ;
WOLFLE, P .
PHYSICAL REVIEW B, 1994, 49 (23) :16609-16613
[6]   Fractionalization in an easy-axis Kagome antiferromagnet [J].
Balents, L ;
Fisher, MPA ;
Girvin, SM .
PHYSICAL REVIEW B, 2002, 65 (22) :2244121-2244128
[7]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[8]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[9]   Quantum coherence with a single Cooper pair [J].
Bouchiat, V ;
Vion, D ;
Joyez, P ;
Esteve, D ;
Devoret, MH .
PHYSICA SCRIPTA, 1998, T76 :165-170
[10]   The Bose-Hubbard model:: from Josephson junction arrays to optical lattices [J].
Bruder, C ;
Fazio, R ;
Schön, G .
ANNALEN DER PHYSIK, 2005, 14 (9-10) :566-577