Fault and Noise Tolerance in the Incremental Extreme Learning Machine

被引:16
作者
Leung, Ho Chun [1 ]
Leung, Chi Sing [1 ]
Wong, Eric Wing Ming [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Single hidden layer network; incremental learning; extreme learning machine; multiplicative noise; open fault; NEURAL-NETWORKS; FEEDFORWARD NETWORKS; ERROR ANALYSIS; DESIGN;
D O I
10.1109/ACCESS.2019.2948059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The extreme learning machine (ELM) is an efficient way to build single-hidden-layer feedforward networks (SLFNs). However, its fault tolerant ability is very weak. When node noise or node failure exist in a network trained by the ELM concept, the performance of the network is greatly degraded if a countermeasure is not taken. However, this kind of countermeasure for the ELM or incremental learning is seldom reported. This paper considers the situation that a trained SLFN suffers from the coexistence of node fault and node noise. We develop two fault tolerant incremental ELM algorithms for the regression problem, namely node fault tolerant incremental ELM (NFTI-ELM) and node fault tolerant convex incremental ELM (NFTCI-ELM). The NFTI-ELM determines the output weight of the newly inserted node only. We prove that in terms of the training set mean squared error (MSE) of faulty SLFNs, the NFTI-ELM converges. Our numerical results show that the NFTI-ELM is superior to the conventional ELM and incremental ELM algorithms under faulty situations. To further improve the performance, we propose the NFTCI-ELM algorithm. It not only determines the output weight of the newly inserted node, but also updates all previously trained output weights. In terms of training set MSE of faulty SLFNs, the NFTCI-ELM converges, and it is superior to the NFTI-ELM.
引用
收藏
页码:155171 / 155183
页数:13
相关论文
共 50 条
  • [21] Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine
    Yuan, Zixia
    Xiong, Guojiang
    Fu, Xiaofan
    Mohamed, Ali Wagdy
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 236
  • [22] A Mean Model Based Incremental Learning Technique for Extreme Learning Machine
    Vidhya, M.
    Aji, S.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 541 - 547
  • [23] QR factorization based Incremental Extreme Learning Machine with growth of hidden nodes
    Ye, Yibin
    Qin, Yang
    PATTERN RECOGNITION LETTERS, 2015, 65 : 177 - 183
  • [24] A hierarchical structure of extreme learning machine (HELM) for high-dimensional datasets with noise
    He, Yan-Lin
    Geng, Zhi-Qiang
    Xu, Yuan
    Zhu, Qun-Xiong
    NEUROCOMPUTING, 2014, 128 : 407 - 414
  • [25] Noise Resistant Training for Extreme Learning Machine
    Lui, Yik Lam
    Wong, Hiu Tung
    Leung, Chi-Sing
    Kwong, Sam
    ADVANCES IN NEURAL NETWORKS, PT II, 2017, 10262 : 257 - 265
  • [26] Parallel Chaos Search Based Incremental Extreme Learning Machine
    Yimin Yang
    Yaonan Wang
    Xiaofang Yuan
    Neural Processing Letters, 2013, 37 : 277 - 301
  • [27] Incremental extreme learning machine with fully complex hidden nodes
    Huang, Guang-Bin
    Li, Ming-Bin
    Chen, Lei
    Siew, Chee-Kheong
    NEUROCOMPUTING, 2008, 71 (4-6) : 576 - 583
  • [28] A Parallel Incremental Learning Algorithm for Neural Networks with Fault Tolerance
    Bahi, Jacques M.
    Contassot-Vivier, Sylvain
    Sauget, Marc
    Vasseur, Aurelien
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2008, 2008, 5336 : 174 - +
  • [29] Incremental semi-supervised Extreme Learning Machine for Mixed data stream classification
    Li, Qiude
    Xiong, Qingyu
    Ji, Shengfen
    Yu, Yang
    Wu, Chao
    Gao, Min
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [30] A Fault Diagnosis Method by Using Extreme Learning Machine
    Wang, Chunxia
    Wen, Chenglin
    Lu, Yang
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ESTIMATION, DETECTION AND INFORMATION FUSION ICEDIF 2015, 2015, : 318 - 322