On the Parameterized Complexity of Graph Modification to First-Order Logic Properties

被引:5
|
作者
Fomin, Fedor V. [1 ]
Golovach, Petr A. [1 ]
Thilikos, Dimitrios M. [2 ]
机构
[1] Univ Bergen, Dept Informat, Bergen, Norway
[2] Univ Montpellier, AlGCo Project Team, CNRS, LIRMM, Montpellier, France
关键词
First-order logic; Graph modification; Parameterized complexity; Descriptive complexity; Kernelization; 2ND-ORDER LOGIC; EDGE;
D O I
10.1007/s00224-019-09938-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We establish connections between parameterized/kernelization complexity of graph modification problems and expressibility in logic. For a first-order logic formula phi, we consider the problem of deciding whether an input graph can be modified by removing/adding at most k vertices/edges such that the resulting modification has the property expressible by phi. We provide sufficient and necessary conditions on the structure of the prefix of phi specifying when the corresponding graph modification problem is fixed-parameter tractable (parameterized by k) and when it admits a polynomial kernel.
引用
收藏
页码:251 / 271
页数:21
相关论文
共 50 条
  • [1] On the Parameterized Complexity of Graph Modification to First-Order Logic Properties
    Fedor V. Fomin
    Petr A. Golovach
    Dimitrios M. Thilikos
    Theory of Computing Systems, 2020, 64 : 251 - 271
  • [2] On the Parameterized Complexity of Graph Modification to First-Order Logic Properties
    Fomin, Fedor V.
    Golovach, Petr A.
    Thilikos, Dimitrios M.
    Theory of Computing Systems, 2020, 64 (02): : 251 - 271
  • [3] Parameterized Complexity of Elimination Distance to First-Order Logic Properties
    Fomin, Fedor, V
    Golovach, Petr A.
    Thilikos, Dimitrios M.
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2022, 23 (03)
  • [4] Parameterized Complexity of Elimination Distance to First-Order Logic Properties
    Fomin, Fedor, V
    Golovach, Petr A.
    Thilikos, Dimitrios M.
    2021 36TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2021,
  • [5] On the Parameterized Complexity of Learning First-Order Logic
    van Bergerem, Steffen
    Grohe, Martin
    Ritzert, Martin
    PROCEEDINGS OF THE 41ST ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS (PODS '22), 2022, : 337 - 346
  • [6] Parameterized Complexity of Some Prefix-Vocabulary Fragments of First-Order Logic
    Bustamante, Luis Henrique
    Martins, Ana Teresa
    Martins, Francicleber Ferreira
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION (WOLLIC 2018), 2018, 10944 : 163 - 178
  • [7] THE PARAMETERIZED SPACE COMPLEXITY OF MODEL-CHECKING BOUNDED VARIABLE FIRST-ORDER LOGIC
    Chen, Yijia
    Elberfeld, Michael
    Muller, Moritz
    LOGICAL METHODS IN COMPUTER SCIENCE, 2019, 15 (03)
  • [8] Physical Computational Complexity and First-order Logic
    Whyman, Richard
    FUNDAMENTA INFORMATICAE, 2021, 181 (2-3) : 129 - 161
  • [9] Complexity of existential positive first-order logic
    Bodirsky, Manuel
    Hermann, Miki
    Richoux, Florian
    JOURNAL OF LOGIC AND COMPUTATION, 2013, 23 (04) : 753 - 760
  • [10] Complexity of Existential Positive First-Order Logic
    Bodirsky, Manuel
    Hermann, Miki
    Richoux, Florian
    MATHEMATICAL THEORY AND COMPUTATIONAL PRACTICE, 2009, 5635 : 31 - 36