Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material

被引:173
|
作者
Cabeza, LF
Svensson, G
Hiebler, S
Mehling, H
机构
[1] Univ Lleida, Dept Informat & Engn Ind, Lleida 25001, Spain
[2] ZAE Bayern, Abt Energy Convers & Storage 1, D-85748 Garching, Germany
关键词
phase change material; PCM; thickening; sodium acetate trihydrate; thermal performance;
D O I
10.1016/S1359-4311(03)00107-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
The use of phase change materials (PCMs) in energy storage has the advantage of high energy density and isothermal operation. Although the use of only non-segregating PCMs is a good commercial approach, some desirable PCM melting points do not seem attainable with non-segregating salt hydrates at a reasonable price. The addition of gellants and thickeners can avoid segregation of these materials. In this paper, sodium acetate trihydrate is successfully thickened with bentonite and starch. Cellulose gives an even better thickened PCM, but temperatures higher than 65 degreesC give phase separation. The mixtures would show a similar thermal behavior as the salt hydrate, with the same melting point and an enthalpy decrease between 20% and 35%, depending on the type and amount of thickening material used. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1697 / 1704
页数:8
相关论文
共 50 条
  • [1] Thermal performance of sodium acetate trihydrate based composite phase change material for thermal energy storage
    Zhao, Liang
    Xing, Yuming
    Liu, Xin
    Luo, Yegang
    APPLIED THERMAL ENGINEERING, 2018, 143 : 172 - 181
  • [2] Sodium acetate trihydrate-based composite phase change material with enhanced thermal performance for energy storage
    Zhang, Zhuang
    Duan, Zhenya
    Chen, Dongming
    Xie, Yushen
    Cao, Xing
    Wang, Jingtao
    JOURNAL OF ENERGY STORAGE, 2021, 34
  • [3] Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage
    Wang, Yan
    Yu, Kaixiang
    Peng, Hao
    Ling, Xiang
    ENERGY, 2019, 167 (15 January 2019) : 269 - 274
  • [4] Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage
    Liu, Chenzhen
    Hu, Pengbo
    Xu, Ze
    Ma, Xiaotian
    Rao, Zhonghao
    THERMOCHIMICA ACTA, 2019, 674 : 28 - 35
  • [5] Experimental study on supercooling performance optimization of sodium acetate trihydrate phase change energy storage materials
    Zhang, Xiao
    Tan, Zengyi
    Geng, Long
    Zhao, Jiateng
    Liu, Changhui
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [6] Experimental investigation of high performance composite phase change materials based on sodium acetate trihydrate for solar thermal energy storage
    Fang, Guihua
    Zhang, Wentao
    Yu, Menghuan
    Meng, Keke
    Tan, Xin
    Solar Energy Materials and Solar Cells, 2022, 234
  • [7] Experimental investigation of high performance composite phase change materials based on sodium acetate trihydrate for solar thermal energy storage
    Fang, Guihua
    Zhang, Wentao
    Yu, Menghuan
    Meng, Keke
    Tan, Xin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 234
  • [8] Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage
    Fashandi, Maryam
    Leung, Siu N.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 178 : 259 - 265
  • [9] Preparation and Thermal Performance Analysis of New Composite Phase Change Materials of Sodium Acetate Trihydrate and Different Additives.
    Luo, Kai
    Ye, Weiliang
    Zeng, Zui
    Wu, Dengke
    Liu, Jingtao
    CHEMISTRYSELECT, 2022, 7 (13):
  • [10] Thermal energy storage and solar energy utilization enabled by novel composite sodium acetate trihydrate/sodium dihydrogen phosphate dihydrate phase change materials
    Liu, Xingru
    Huang, Zhongliang
    Wang, Yang
    Su, Hua
    Lin, Pengcheng
    Yu, Weitai
    Chen, Ying
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 247