Well-rounded sublattices of planar lattices

被引:2
作者
Baake, Michael [1 ]
Scharlau, Rudolf [2 ]
Zeiner, Peter [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Tech Univ Dortmund, Fak Math, D-44221 Dortmund, Germany
关键词
geometry of numbers; planar lattices; sublattice enumeration; Dirichlet series generating functions; asymptotic growth; ZETA-FUNCTIONS; DIFFRACTION; DIMENSIONS; SYMMETRY; POINTS;
D O I
10.4064/aa166-4-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:301 / 334
页数:34
相关论文
共 33 条
[1]  
[Anonymous], INTRO ARITHMETIC THE
[2]  
[Anonymous], 1982, SYMMETRIEN ORNAMENTE
[3]  
Apostol T.M., 1976, INTRO ANAL NUMBER TH
[4]   Diffraction from visible lattice points and kth power free integers [J].
Baake, M ;
Moody, RV ;
Pleasants, PAB .
DISCRETE MATHEMATICS, 2000, 221 (1-3) :3-42
[5]   Bravais colourings of planar modules with N-fold symmetry [J].
Baake, M ;
Grimm, U .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2004, 219 (02) :72-80
[6]  
Baake M, 1997, NATO ADV SCI I C-MAT, V489, P9
[7]   Coincidence rotations of the root lattice A4 [J].
Baake, Michael ;
Grimm, Uwe ;
Heuer, Manuela ;
Zeiner, Peter .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (08) :1808-1819
[8]   Similar Sublattices of Planar Lattices [J].
Baake, Michael ;
Scharlau, Rudolf ;
Zeiner, Peter .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (06) :1220-1237
[9]  
Borevich Z.I., 1966, Number Theory
[10]  
BRUDERN J, 1995, EINFUHRUNG ANAL ZAHL