Self-contracted curves in Riemannian manifolds

被引:17
|
作者
Daniilidis, Aris [1 ]
Deville, Robert [2 ]
Durand-Cartagena, Estibalitz [3 ]
Rifford, Ludovic [4 ,5 ]
机构
[1] Univ Chile, UMI CNRS 2807, DIM CMM, Beauchef 581,Torre Norte,Piso 5, Santiago 8370456, Chile
[2] Univ Bordeaux 1, Inst Math Bordeaux, Lab Bordelais Anal & Geometrie, 351 Cours Liberat, F-33405 Talence, France
[3] UNED, ETSI Ind, Dept Matemat Aplicada, Juan del Rosal 12,Ciudad Univ, Madrid 28040, Spain
[4] Univ Chile, UMI CNRS 2807, CMM, Blanco Encalada 2120, Santiago, Chile
[5] Univ Nice Sophia Antipolis, UMR CNRS 7351, Lab JA Dieudonne, Parc Valrose, F-06108 Nice 2, France
关键词
Self-contracted curve; Self-expanded curve; Rectifiable curve; Length; Secant; Riemannian manifold; STEEPEST DESCENT CURVES; CONVEX-FUNCTIONS;
D O I
10.1016/j.jmaa.2017.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is established that every self-contracted curve in a Riemannian manifold has finite length, provided its image is contained in a compact set. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1333 / 1352
页数:20
相关论文
共 50 条
  • [21] THE EQUI-AFFINE AND FRENET CURVATURES OF CURVES IN PSEUDO-RIEMANNIAN 2-MANIFOLDS
    Olszak, Karina
    Olszak, Zbigniew
    COLLOQUIUM MATHEMATICUM, 2017, 150 (01) : 103 - 112
  • [22] Approximation of Densities on Riemannian Manifolds
    le Brigant, Alice
    Puechmorel, Stephane
    ENTROPY, 2019, 21 (01):
  • [23] Essential spectrum on Riemannian manifolds
    Elworthy, KD
    Wang, FY
    RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, : 151 - 165
  • [24] Partial balayage on Riemannian manifolds
    Gustafsson, Bjorn
    Roos, Joakim
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 118 : 82 - 127
  • [25] On the Curve Reconstruction in Riemannian Manifolds
    Shah, Pratik
    Chatterji, Samaresh
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 45 (01) : 55 - 68
  • [26] Heat invariants of Riemannian manifolds
    Polterovich, I
    ISRAEL JOURNAL OF MATHEMATICS, 2000, 119 (1) : 239 - 252
  • [27] Heat invariants of Riemannian manifolds
    Iosif Polterovich
    Israel Journal of Mathematics, 2000, 119 : 239 - 252
  • [28] Slant helices on Riemannian manifolds
    Caliskan, Abdussamet
    Sahin, Bayram
    FILOMAT, 2024, 38 (22) : 7743 - 7754
  • [29] Proximal Calculus on Riemannian Manifolds
    Daniel Azagra
    Juan Ferrera
    Mediterranean Journal of Mathematics, 2005, 2 : 437 - 450
  • [30] ON THE REGULARITY OF SETS IN RIEMANNIAN MANIFOLDS
    SEPAHVAND, A.
    BARANI, A.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (03) : 386 - 405