Self-contracted curves in Riemannian manifolds

被引:17
|
作者
Daniilidis, Aris [1 ]
Deville, Robert [2 ]
Durand-Cartagena, Estibalitz [3 ]
Rifford, Ludovic [4 ,5 ]
机构
[1] Univ Chile, UMI CNRS 2807, DIM CMM, Beauchef 581,Torre Norte,Piso 5, Santiago 8370456, Chile
[2] Univ Bordeaux 1, Inst Math Bordeaux, Lab Bordelais Anal & Geometrie, 351 Cours Liberat, F-33405 Talence, France
[3] UNED, ETSI Ind, Dept Matemat Aplicada, Juan del Rosal 12,Ciudad Univ, Madrid 28040, Spain
[4] Univ Chile, UMI CNRS 2807, CMM, Blanco Encalada 2120, Santiago, Chile
[5] Univ Nice Sophia Antipolis, UMR CNRS 7351, Lab JA Dieudonne, Parc Valrose, F-06108 Nice 2, France
关键词
Self-contracted curve; Self-expanded curve; Rectifiable curve; Length; Secant; Riemannian manifold; STEEPEST DESCENT CURVES; CONVEX-FUNCTIONS;
D O I
10.1016/j.jmaa.2017.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is established that every self-contracted curve in a Riemannian manifold has finite length, provided its image is contained in a compact set. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1333 / 1352
页数:20
相关论文
共 50 条
  • [1] Rectifiability of Self-Contracted Curves in the Euclidean Space and Applications
    Daniilidis, A.
    David, G.
    Durand-Cartagena, E.
    Lemenant, A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1211 - 1239
  • [2] Metric and Geometric Relaxations of Self-Contracted Curves
    Daniilidis, Aris
    Deville, Robert
    Durand-Cartagena, Estibalitz
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 182 (01) : 81 - 109
  • [3] Rectifiability of Self-Contracted Curves in the Euclidean Space and Applications
    A. Daniilidis
    G. David
    E. Durand-Cartagena
    A. Lemenant
    The Journal of Geometric Analysis, 2015, 25 : 1211 - 1239
  • [4] Metric and Geometric Relaxations of Self-Contracted Curves
    Aris Daniilidis
    Robert Deville
    Estibalitz Durand-Cartagena
    Journal of Optimization Theory and Applications, 2019, 182 : 81 - 109
  • [5] Self-contracted Curves in CAT(0)-Spaces and Their Rectifiability
    Ohta, Shin-ichi
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 936 - 967
  • [6] Ubiquitous Algorithms in Convex Optimization Generate Self-Contracted Sequences
    Boehm, Axel
    Daniilidis, Aris
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (01) : 119 - 128
  • [7] Total curvature of curves in Riemannian manifolds
    Castrillon Lopez, M.
    Fernandez Mateos, V.
    Munoz Masque, J.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2010, 28 (02) : 140 - 147
  • [8] Probabilistic Principal Curves on Riemannian Manifolds
    Kang, Seungwoo
    Oh, Hee-Seok
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (07) : 4843 - 4849
  • [9] Gravitational magnetic curves on 3D Riemannian manifolds
    Korpinar, Talat
    Demirkol, Ridvan Cem
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (11)
  • [10] LANDAU-KOLMOGOROV TYPE INEQUALITIES FOR CURVES ON RIEMANNIAN MANIFOLDS
    Parasyuk, Igor
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 433 - 443