Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and in Vitro Experimental Validation of Computationally Screened Inhibitors

被引:32
作者
Glaab, Enrico [2 ]
Manoharan, Ganesh Babu [1 ]
Abankwa, Daniel [1 ]
机构
[1] Univ Luxembourg, Dept Life Sci & Med, L-4362 Esch Sur Alzette, Luxembourg
[2] Univ Luxembourg, Luxembourg Ctr Syst Biomed LCSB, L-4362 Esch Sur Alzette, Luxembourg
关键词
SARS CORONAVIRUS; DRUG DISCOVERY; 3C-LIKE PROTEINASE; FORCE-FIELD; PROTEASE; COVID-19; FLAVONOIDS; LIBRARIES; DYNAMICS; DOCKING;
D O I
10.1021/acs.jcim.1c00258
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Among the biomedical efforts in response to the current coronavirus (COVID-19) pandemic, pharmacological strategies to reduce viral load in patients with severe forms of the disease are being studied intensively. One of the main drug target proteins proposed so far is the SARS-CoV-2 viral protease 3CLpro (also called Mpro), an essential component for viral replication. Ongoing ligand- and receptor-based computational screening efforts would be facilitated by an improved understanding of the electrostatic, hydrophobic, and steric features that characterize small-molecule inhibitors binding stably to 3CLpro and by an extended collection of known binders. Her; we present combined virtual screening, molecular dynamics (MD) simulation, machine learning, and in vitro experimental validation analyses, which have led to the identification of small-molecule inhibitors of 3CLpro with micromolar activity and to a pharmacophore model that describes functional chemical groups associated with the molecular recognition of ligands by the 3CLpro binding pocket. Experimentally validated inhibitors using a ligand activity assay include natural compounds with the available prior knowledge on safety and bioavailability properties, such as the natural compound rottlerin (IC50 = 37 mu M) and synthetic compounds previously not characterized (e.g., compound CID 46897844, IC50 = 31 mu M). In combination with the developed pharmacophore model, these and other confirmed 3CLpro inhibitors may provide a basis for further similarity-based screening in independent compound databases and structural design optimization efforts to identify 3CLpro ligands with improved potency and selectivity. Overall, this study suggests that the integration of virtual screening, MD simulations, and machine learning can facilitate 3CLpro-targeted small-molecule screening investigations. Different receptor-, ligand-, and machine learning-based screening strategies provided complementary information, helping to increase the number and diversity of the identified active compounds. Finally, the resulting pharmacophore model and experimentally validated small-molecule inhibitors for 3CLpro provide resources to support follow-up computational screening efforts for this drug target.
引用
收藏
页码:4082 / 4096
页数:15
相关论文
共 98 条
[1]   Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 [J].
Acharya, A. ;
Agarwal, R. ;
Baker, M. B. ;
Baudry, J. ;
Bhowmik, D. ;
Boehm, S. ;
Byler, K. G. ;
Chen, S. Y. ;
Coates, L. ;
Cooper, C. J. ;
Demerdash, O. ;
Daidone, I ;
Eblen, J. D. ;
Ellingson, S. ;
Forli, S. ;
Glaser, J. ;
Gumbart, J. C. ;
Gunnels, J. ;
Hernandez, O. ;
Irle, S. ;
Kneller, D. W. ;
Kovalevsky, A. ;
Larkin, J. ;
Lawrence, T. J. ;
LeGrand, S. ;
Liu, S-H ;
Mitchell, J. C. ;
Park, G. ;
Parks, J. M. ;
Pavlova, A. ;
Petridis, L. ;
Poole, D. ;
Pouchard, L. ;
Ramanathan, A. ;
Rogers, D. M. ;
Santos-Martins, D. ;
Scheinberg, A. ;
Sedova, A. ;
Shen, Y. ;
Smith, J. C. ;
Smith, M. D. ;
Soto, C. ;
Tsaris, A. ;
Thavappiragasam, M. ;
Tillack, A. F. ;
Vermaas, J. V. ;
Vuong, V. Q. ;
Yin, J. ;
Yoo, S. ;
Zahran, M. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5832-5852
[2]  
[Anonymous], 2020, NATURE, DOI DOI 10.1038/s41586-020-2223-y, Patent No. [WO2020086857A1, 2020086857]
[3]   New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays [J].
Baell, Jonathan B. ;
Holloway, Georgina A. .
JOURNAL OF MEDICINAL CHEMISTRY, 2010, 53 (07) :2719-2740
[4]  
Beigel JH, 2020, NEW ENGL J MED, V383, P1813, DOI [10.1056/NEJMoa2007764, 10.1056/NEJMc2022236]
[5]   The Protein Data Bank [J].
Berman, HM ;
Battistuz, T ;
Bhat, TN ;
Bluhm, WF ;
Bourne, PE ;
Burkhardt, K ;
Iype, L ;
Jain, S ;
Fagan, P ;
Marvin, J ;
Padilla, D ;
Ravichandran, V ;
Schneider, B ;
Thanki, N ;
Weissig, H ;
Westbrook, JD ;
Zardecki, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :899-907
[6]   Targeting the Main Protease of SARS-CoV-2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors [J].
Breidenbach, Julian ;
Lemke, Carina ;
Pillaiyar, Thanigaimalai ;
Schaekel, Laura ;
Al Hamwi, Ghazl ;
Diett, Miriam ;
Gedschold, Robin ;
Geiger, Nina ;
Lopez, Vittoria ;
Mirza, Salahuddin ;
Namasivayam, Vigneshwaran ;
Schiedel, Anke C. ;
Sylvester, Katharina ;
Thimm, Dominik ;
Vielmuth, Christin ;
Phuong Vu, Lan ;
Zyulina, Maria ;
Bodem, Jochen ;
Guetschow, Michael ;
Mueller, Christa E. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (18) :10423-10429
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Lessons learnt from assembling screening libraries for drug discovery for neglected diseases [J].
Brenk, Ruth ;
Schipani, Alessandro ;
James, Daniel ;
Krasowski, Agata ;
Gilbert, Ian Hugh ;
Frearson, Julie ;
Wyatt, Paul Graham .
CHEMMEDCHEM, 2008, 3 (03) :435-444
[9]   In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds [J].
Chen, F ;
Chan, KH ;
Jiang, Y ;
Kao, RYT ;
Lu, HT ;
Fan, KW ;
Cheng, VCC ;
Tsui, WHW ;
Hung, IFN ;
Lee, TSW ;
Guan, Y ;
Peiris, JSM ;
Yuen, KY .
JOURNAL OF CLINICAL VIROLOGY, 2004, 31 (01) :69-75
[10]   ISOLATION AND STUDIES OF THE MUTAGENIC ACTIVITY IN THE AMES TEST OF FLAVONOIDS NATURALLY-OCCURRING IN MEDICAL HERBS [J].
CZECZOT, H ;
TUDEK, B ;
KUSZTELAK, J ;
SZYMCZYK, T ;
DOBROWOLSKA, B ;
GLINKOWSKA, G ;
MALINOWSKI, J ;
STRZELECKA, H .
MUTATION RESEARCH, 1990, 240 (03) :209-216