Turing pattern outside of the Turing domain

被引:5
|
作者
Flach, E. H.
Schnell, S.
Norbury, J.
机构
[1] Indiana Univ, Sch Informat, Complex Syst Grp, Bloomington, IN 47406 USA
[2] Math Inst, Ctr Math Biol, Oxford OX1 3LB, England
关键词
reaction-diffusion; limit cycle; Schnakenberg; Turing pattern; convection;
D O I
10.1016/j.aml.2006.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are two simple solutions to reaction-diffusion systems with limit-cycle reaction kinetics, producing oscillatory behaviour. The reaction parameter mu gives rise to a 'space-invariant' solution, and mu versus the ratio of the diffusion coefficients gives rise to a time-invariant' solution. We consider the case where both solution types may be possible. This leads to a refinement of the Turing model of pattern formation. We add convection to the system and investigate its effect. More complex solutions arise that appear to combine the two simple solutions. The convective system sheds light on the underlying behaviour of the diffusive system. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:959 / 963
页数:5
相关论文
共 50 条
  • [21] Turing pattern and chemical medium-range order of metallic glasses
    Liu, Songling
    Luo, Xinyu
    Cao, Jingshan
    Liu, Zhaoyuan
    Xu, Beibei
    Sun, Yonghao
    Wang, Weihua
    MATERIALS TODAY PHYSICS, 2023, 38
  • [22] Emergence of Diverse Epidermal Patterns via the Integration of the Turing Pattern Model with the Majority Voting Model
    Ishida, Takeshi
    BIOPHYSICA, 2024, 4 (02): : 283 - 297
  • [23] Pattern formation by two-layer Turing system with complementary synthesis
    Fujita, Hironori
    Kawaguchi, Masayoshi
    JOURNAL OF THEORETICAL BIOLOGY, 2013, 322 : 33 - 45
  • [24] Inverse design of microchannel fluid flow networks using Turing pattern dehomogenization
    Ercan M. Dede
    Yuqing Zhou
    Tsuyoshi Nomura
    Structural and Multidisciplinary Optimization, 2020, 62 : 2203 - 2210
  • [25] Fourier analysis of Turing-like pattern formation in cellular automaton models
    Dormann, S
    Deutsch, A
    Lawniczak, AT
    FUTURE GENERATION COMPUTER SYSTEMS, 2001, 17 (07) : 901 - 909
  • [26] Inverse design of microchannel fluid flow networks using Turing pattern dehomogenization
    Dede, Ercan M.
    Zhou, Yuqing
    Nomura, Tsuyoshi
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 62 (04) : 2203 - 2210
  • [27] Turing pattern of an SIRI model on large-scale homogeneous and heterogeneous networks
    He, Le
    Su, Haijun
    NONLINEAR DYNAMICS, 2023, 111 (17) : 16605 - 16626
  • [28] Turing pattern amplitude equation for a model glycolytic reaction-diffusion system
    Dutt, A. K.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (04) : 841 - 855
  • [29] From Turing structures to chemomechanics
    Boissonade, Jacques
    Dulos, Etiennette
    De Kepper, Patrick
    ACTUALITE CHIMIQUE, 2009, (336): : 17 - 21
  • [30] Turing instability and pattern formation of neural networks with reaction-diffusion terms
    Zhao, Hongyong
    Huang, Xuanxuan
    Zhang, Xuebing
    NONLINEAR DYNAMICS, 2014, 76 (01) : 115 - 124