Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light

被引:567
作者
Zhou, Yajun [1 ]
Zhang, Lingxia [1 ]
Liu, Jianjun [1 ]
Fan, Xiangqian [1 ]
Wang, Beizhou [1 ]
Wang, Min [1 ]
Ren, Wenchao [1 ]
Wang, Jin [1 ]
Li, Mengli [1 ]
Shi, Jianlin [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAPHITIC CARBON NITRIDE; HYDROGEN-EVOLUTION; GRAPHENE; PHOTOREACTIVITY; EXFOLIATION; CATALYSIS;
D O I
10.1039/c4ta05292g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
P-doped g-C3N4 has been successfully synthesized using hexachlorocyclotriphosphazene, a low cost and environmentally benign compound, as phosphorus source, and guanidiniumhydrochloride as g-C3N4 precursor, via a thermally induced copolymerization route. The obtained P-doped g-C3N4 showed excellent photocatalytic performance both in the photoreduction of H2O to produce H-2 and the photodegradation of Rhodamine B (RhB). H-2 evolution rate on modified g-C3N4 reached 50.6 mu mol h(-1), which is 2.9 times higher than that of the pure g-C3N4. RhB ( 10 mg L-1) was completely photodegraded within 10 min. The structure and texture properties of the P-doped g-C3N4 have been investigated in detail by XRD, FTIR, TEM, EDS and STEM. With the results of XPS and P-31 NMR, a possible existing form of P atom in the framework g-C3N4 has been put forward. The introduction of a P atom significantly changes the electronic property of g-C3N4 and suppresses the recombination of photogenerated charge carriers, thus improving its photocatalytic performance.
引用
收藏
页码:3862 / 3867
页数:6
相关论文
共 38 条
[1]   XPS STUDY OF CHEMICALLY ETCHED GAAS AND INP [J].
BERTRAND, PA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1981, 18 (01) :28-33
[2]   g-C3N4-Based Photocatalysts for Hydrogen Generation [J].
Cao, Shaowen ;
Yu, Jiaguo .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (12) :2101-2107
[3]   Structure and electronic structure of S-doped graphitic C3N4 investigated by density functional theory [J].
Chen Gang ;
Gao Shang-Peng .
CHINESE PHYSICS B, 2012, 21 (10)
[4]   AUGER PARAMETER MEASUREMENTS OF PHOSPHORUS-COMPOUNDS FOR CHARACTERIZATION OF PHOSPHAZENES [J].
DAKE, LS ;
BAER, DR ;
FRIEDRICH, DM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (03) :1634-1638
[5]   Making Metal-Carbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light [J].
Di, Yan ;
Wang, Xinchen ;
Thomas, Arne ;
Antonietti, Markus .
CHEMCATCHEM, 2010, 2 (07) :834-838
[6]   Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4 [J].
Dong, Guohui ;
Zhao, Kun ;
Zhang, Lizhi .
CHEMICAL COMMUNICATIONS, 2012, 48 (49) :6178-6180
[7]   Low-temperature route to nanoscale P3N5 hollow spheres [J].
Gu, HZ ;
Gu, YL ;
Li, ZF ;
Ying, YC ;
Qian, Y .
JOURNAL OF MATERIALS RESEARCH, 2003, 18 (10) :2359-2363
[8]  
Guo Q., 2004, J MATER RES, V20, P325
[9]   Photocatalytic hydrogen production over carbon nitride loaded with WS2 as cocatalyst under visible light [J].
Hou, Yidong ;
Zhu, Yongsheng ;
Xu, Yan ;
Wang, Xinchen .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 156 :122-127
[10]   Layered Nanojunctions for Hydrogen-Evolution Catalysis [J].
Hou, Yidong ;
Laursen, Anders B. ;
Zhang, Jinshui ;
Zhang, Guigang ;
Zhu, Yongsheng ;
Wang, Xinchen ;
Dahl, Soren ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (13) :3621-3625