ChIP-Seq identification of weakly conserved heart enhancers

被引:336
|
作者
Blow, Matthew J. [1 ,2 ]
McCulley, David J. [3 ,4 ]
Li, Zirong [5 ]
Zhang, Tao [2 ]
Akiyama, Jennifer A. [1 ]
Holt, Amy [1 ]
Plajzer-Frick, Ingrid [1 ]
Shoukry, Malak [1 ]
Wright, Crystal [2 ]
Chen, Feng [2 ]
Afzal, Veena [1 ]
Bristow, James [2 ]
Ren, Bing [5 ]
Black, Brian L. [3 ,4 ]
Rubin, Edward M. [1 ,2 ]
Visel, Axel [1 ,2 ]
Pennacchio, Len A. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA
[2] Energy Joint Genome Inst, US Dept, Walnut Creek, CA USA
[3] Univ Calif San Francisco, Inst Cardiovasc Res, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[5] Univ Calif San Diego, Sch Med, Ludwig Inst Canc Res, La Jolla, CA 92093 USA
关键词
REGULATORY ELEMENTS; GENOME; DATABASE; MECHANISMS; VERTEBRATE; CONSTRAINT; PROMOTERS; EVOLUTION; SEQUENCES; 1-PERCENT;
D O I
10.1038/ng.650
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme noncoding-sequence conservation has successfully predicted enhancers that are active in many tissues but has failed to identify substantial numbers of heart-specific enhancers. Here, we used ChIP-Seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over 3,000 candidate heart enhancers genome wide. Compared to enhancers active in other tissues we studied at this time point, most candidate heart enhancers were less deeply conserved in vertebrate evolution. Nevertheless, transgenic mouse assays of 130 candidate regions revealed that most function reproducibly as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary conservation of embryonic enhancers can vary depending on tissue type.
引用
收藏
页码:806 / U107
页数:7
相关论文
共 50 条
  • [41] Python in ChIP-Seq data analysis
    Zhang, Li
    Hu, Yuansen
    Wang, Jinshui
    Zhang, Guangle
    Journal of Chemical and Pharmaceutical Research, 2014, 6 (03) : 1002 - 1007
  • [42] Computational methodology for ChIP-seq analysis
    Hyunjin Shin
    Tao Liu
    Xikun Duan
    Yong Zhang
    XShirley Liu
    Quantitative Biology, 2013, 1 (01) : 54 - 70
  • [43] Normalization of ChIP-seq data with control
    Liang, Kun
    Keles, Sunduz
    BMC BIOINFORMATICS, 2012, 13
  • [44] ChIP-seq: welcome to the new frontier
    Mardis, Elaine R.
    NATURE METHODS, 2007, 4 (08) : 613 - 614
  • [45] ChIP-seq: welcome to the new frontier
    Elaine R Mardis
    Nature Methods, 2007, 4 : 613 - 614
  • [46] CistromeFinder for ChIP-seq and DNase-seq data reuse
    Sun, Hanfei
    Qin, Bo
    Liu, Tao
    Wang, Qixuan
    Liu, Jing
    Wang, Juan
    Lin, Xueqiu
    Yang, Yulin
    Taing, Len
    Rao, Prakash K.
    Brown, Myles
    Zhang, Yong
    Long, Henry W.
    Liu, X. Shirley
    BIOINFORMATICS, 2013, 29 (10) : 1352 - 1354
  • [47] Identification of β-catenin binding regions in colon cancer cells using ChIP-Seq
    Bottomly, Daniel
    Kyler, Sydney L.
    McWeeney, Shannon K.
    Yochum, Gregory S.
    NUCLEIC ACIDS RESEARCH, 2010, 38 (17) : 5735 - 5745
  • [48] Computational identification of cell-specific variable regions in ChIP-seq data
    Andreani, Tommaso
    Albrecht, Steffen
    Fontaine, Jean-Fred
    Andrade-Navarro, Miguel A.
    NUCLEIC ACIDS RESEARCH, 2020, 48 (09)
  • [49] A pipeline for the identification and characterization of chromatin modifications derived from ChIP-Seq datasets
    Kaspi, Antony
    Ziemann, Mark
    Rafehi, Haloom
    Lazarus, Ross
    El-Osta, Assam
    BIOCHIMIE, 2012, 94 (11) : 2353 - 2359
  • [50] COPAR: A ChIP-Seq Optimal Peak Analyzer
    Tang, Binhua
    Wang, Xihan
    Jin, Victor X.
    BIOMED RESEARCH INTERNATIONAL, 2017, 2017