ChIP-Seq identification of weakly conserved heart enhancers

被引:336
|
作者
Blow, Matthew J. [1 ,2 ]
McCulley, David J. [3 ,4 ]
Li, Zirong [5 ]
Zhang, Tao [2 ]
Akiyama, Jennifer A. [1 ]
Holt, Amy [1 ]
Plajzer-Frick, Ingrid [1 ]
Shoukry, Malak [1 ]
Wright, Crystal [2 ]
Chen, Feng [2 ]
Afzal, Veena [1 ]
Bristow, James [2 ]
Ren, Bing [5 ]
Black, Brian L. [3 ,4 ]
Rubin, Edward M. [1 ,2 ]
Visel, Axel [1 ,2 ]
Pennacchio, Len A. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA
[2] Energy Joint Genome Inst, US Dept, Walnut Creek, CA USA
[3] Univ Calif San Francisco, Inst Cardiovasc Res, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[5] Univ Calif San Diego, Sch Med, Ludwig Inst Canc Res, La Jolla, CA 92093 USA
关键词
REGULATORY ELEMENTS; GENOME; DATABASE; MECHANISMS; VERTEBRATE; CONSTRAINT; PROMOTERS; EVOLUTION; SEQUENCES; 1-PERCENT;
D O I
10.1038/ng.650
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme noncoding-sequence conservation has successfully predicted enhancers that are active in many tissues but has failed to identify substantial numbers of heart-specific enhancers. Here, we used ChIP-Seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over 3,000 candidate heart enhancers genome wide. Compared to enhancers active in other tissues we studied at this time point, most candidate heart enhancers were less deeply conserved in vertebrate evolution. Nevertheless, transgenic mouse assays of 130 candidate regions revealed that most function reproducibly as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary conservation of embryonic enhancers can vary depending on tissue type.
引用
收藏
页码:806 / U107
页数:7
相关论文
共 50 条
  • [31] Computation for chip-seq and rna-seq studies
    Pepke S.
    Wold B.
    Mortazavi A.
    Nature Methods, 2009, 6 (Suppl 11) : S22 - S32
  • [32] Identification of AflR Binding Sites in the Genome ofAspergillus flavusby ChIP-Seq
    Kong, Qing
    Chang, Perng-Kuang
    Li, Chunjuan
    Hu, Zhaorong
    Zheng, Mei
    Sun, Quanxi
    Shan, Shihua
    JOURNAL OF FUNGI, 2020, 6 (02)
  • [33] Computation for ChIP-seq and RNA-seq studies
    Pepke, Shirley
    Wold, Barbara
    Mortazavi, Ali
    NATURE METHODS, 2009, 6 (11) : S22 - S32
  • [34] ChIPseqR: analysis of ChIP-seq experiments
    Peter Humburg
    Chris A Helliwell
    David Bulger
    Glenn Stone
    BMC Bioinformatics, 12
  • [35] Genomic Location Analysis by ChIP-Seq
    Barski, Artem
    Zhao, Keji
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2009, 107 (01) : 11 - 18
  • [36] PICS: Probabilistic Inference for ChIP-seq
    Zhang, Xuekui
    Robertson, Gordon
    Krzywinski, Martin
    Ning, Kaida
    Droit, Arnaud
    Jones, Steven
    Gottardo, Raphael
    BIOMETRICS, 2011, 67 (01) : 151 - 163
  • [37] De novo ChIP-seq analysis
    Xin He
    A. Ercument Cicek
    Yuhao Wang
    Marcel H. Schulz
    Hai-Son Le
    Ziv Bar-Joseph
    Genome Biology, 16
  • [38] Normalization of ChIP-seq data with control
    Kun Liang
    Sündüz Keleş
    BMC Bioinformatics, 13
  • [39] De novo ChIP-seq analysis
    He, Xin
    Cicek, A. Ercument
    Wang, Yuhao
    Schulz, Marcel H.
    Le, Hai-Son
    Bar-Joseph, Ziv
    GENOME BIOLOGY, 2015, 16
  • [40] ChIPseqR: analysis of ChIP-seq experiments
    Humburg, Peter
    Helliwell, Chris A.
    Bulger, David
    Stone, Glenn
    BMC BIOINFORMATICS, 2011, 12