ChIP-Seq identification of weakly conserved heart enhancers

被引:336
|
作者
Blow, Matthew J. [1 ,2 ]
McCulley, David J. [3 ,4 ]
Li, Zirong [5 ]
Zhang, Tao [2 ]
Akiyama, Jennifer A. [1 ]
Holt, Amy [1 ]
Plajzer-Frick, Ingrid [1 ]
Shoukry, Malak [1 ]
Wright, Crystal [2 ]
Chen, Feng [2 ]
Afzal, Veena [1 ]
Bristow, James [2 ]
Ren, Bing [5 ]
Black, Brian L. [3 ,4 ]
Rubin, Edward M. [1 ,2 ]
Visel, Axel [1 ,2 ]
Pennacchio, Len A. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA
[2] Energy Joint Genome Inst, US Dept, Walnut Creek, CA USA
[3] Univ Calif San Francisco, Inst Cardiovasc Res, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[5] Univ Calif San Diego, Sch Med, Ludwig Inst Canc Res, La Jolla, CA 92093 USA
关键词
REGULATORY ELEMENTS; GENOME; DATABASE; MECHANISMS; VERTEBRATE; CONSTRAINT; PROMOTERS; EVOLUTION; SEQUENCES; 1-PERCENT;
D O I
10.1038/ng.650
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme noncoding-sequence conservation has successfully predicted enhancers that are active in many tissues but has failed to identify substantial numbers of heart-specific enhancers. Here, we used ChIP-Seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over 3,000 candidate heart enhancers genome wide. Compared to enhancers active in other tissues we studied at this time point, most candidate heart enhancers were less deeply conserved in vertebrate evolution. Nevertheless, transgenic mouse assays of 130 candidate regions revealed that most function reproducibly as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary conservation of embryonic enhancers can vary depending on tissue type.
引用
收藏
页码:806 / U107
页数:7
相关论文
共 50 条
  • [21] Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes
    Gorkin, David U.
    Lee, Dongwon
    Reed, Xylena
    Fletez-Brant, Christopher
    Bessling, Seneca L.
    Loftus, Stacie K.
    Beer, Michael A.
    Pavan, William J.
    McCallion, Andrew S.
    GENOME RESEARCH, 2012, 22 (11) : 2290 - 2301
  • [22] PairMotifChIP: A Fast Algorithm for Discovery of Patterns Conserved in Large ChIP-seq Data Sets
    Yu, Qiang
    Huo, Hongwei
    Feng, Dazheng
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016
  • [23] The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data
    Ambrosini, Giovanna
    Dreos, Rene
    Kumar, Sunil
    Bucher, Philipp
    BMC GENOMICS, 2016, 17
  • [24] The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data
    Giovanna Ambrosini
    René Dreos
    Sunil Kumar
    Philipp Bucher
    BMC Genomics, 17
  • [25] WSMD: weakly-supervised motif discovery in transcription factor ChIP-seq data
    Hongbo Zhang
    Lin Zhu
    De-Shuang Huang
    Scientific Reports, 7
  • [26] WSMD: weakly-supervised motif discovery in transcription factor ChIP-seq data
    Zhang, Hongbo
    Zhu, Lin
    Huang, De-Shuang
    SCIENTIFIC REPORTS, 2017, 7
  • [27] IDENTIFICATION OF HBx TARGET miRNAs THAT REGULATE HBV REPLICATION BY ChIP-Seq
    Guerrieri, F.
    Belloni, L.
    D'Andrea, D.
    Le Pera, L.
    Pediconi, N.
    Tramontano, A.
    Levrero, M.
    JOURNAL OF HEPATOLOGY, 2013, 58 : S57 - S57
  • [28] Saturation analysis of ChIP-seq data for reproducible identification of binding peaks
    Hansen, Peter
    Hecht, Jochen
    Ibrahim, Daniel M.
    Krannich, Alexander
    Truss, Matthias
    Robinson, Peter N.
    GENOME RESEARCH, 2015, 25 (09) : 1391 - 1400
  • [29] SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data
    Ding, Jun
    Hu, Haiyan
    Li, Xiaoman
    NUCLEIC ACIDS RESEARCH, 2014, 42 (05)
  • [30] Identification of ChIP-seq and RIME grade antibodies for Estrogen Receptor alpha
    Glont, Silvia-E.
    Papachristou, Evangelia K.
    Sawle, Ashley
    Holmes, Kelly A.
    Carroll, Jason S.
    Siersbaek, Rasmus
    PLOS ONE, 2019, 14 (04):