Initial value problem for a fractional neutral differential equation with infinite delay

被引:1
作者
Abdo, Mohammed S. [1 ,2 ]
Panchal, Satish K. [1 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, MS, India
[2] Hodeidah Univ, Dept Math, Al Hodeidah 3114, Yemen
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2021年 / 12卷 / 01期
关键词
fractional functional differential equations; Caputo fractional derivative; existence and continuous dependence; fixed point theorem; EXISTENCE; UNIQUENESS;
D O I
10.22075/ijnaa.2018.13488.1698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study an initial value problem for a class of nonlinear fractional neutral func-tional differential equations with infinite delay involving a Caputo fractional derivative. Existence, uniqueness, and continuous dependence results are established by using a variety of tools of fractional calculus including Banach's contraction principle and Schaefer's fixed point theorem.
引用
收藏
页码:1195 / 1206
页数:12
相关论文
共 31 条
[1]   Partial neutral functional integro-differential equations of fractional order with delay [J].
Abbas, Said ;
Benchohra, Mouffak ;
Cabada, Alberto .
BOUNDARY VALUE PROBLEMS, 2012,
[2]  
Abdo M. S., 2017, J. Math. Model., V5, P153, DOI 10.22124/jmm.2017.2535
[3]  
Abdo M.S., 2018, INT J MATH APPL, V6, P403
[4]   Ulam-Hyers-Mittag-Leffler stability for a ψ-Hilfer problem with fractional order and infinite delay [J].
Abdo, Mohammed S. ;
Panchal, Satish K. ;
Wahash, Hanan A. .
RESULTS IN APPLIED MATHEMATICS, 2020, 7
[5]   Weighted Fractional Neutral Functional Differential Equations [J].
Abdo, Mohammed S. ;
Panchal, Satish K. .
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2018, 11 (05) :535-549
[6]   EFFECT OF PERTURBATION IN THE SOLUTION OF FRACTIONAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
Abdo, Mohammed. S. ;
Panchal, Satish. K. .
JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 22 (01) :63-74
[7]   Existence of fractional neutral functional differential equations [J].
Agarwal, R. P. ;
Zhou, Yong ;
He, Yunyun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1095-1100
[8]  
[Anonymous], 2014, BASIC THEORY FRACTIO
[9]  
Baliki A, 2014, NONAUTONOMOUS DYNAM, V1
[10]   Existence results for fractional order functional differential equations with infinite delay [J].
Benchohra, A. ;
Henderson, J. ;
Ntouyas, S. K. ;
Ouahab, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1340-1350