Centralizers of area preserving diffeomorphisms on S2

被引:3
作者
Burslem, L [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1090/S0002-9939-04-07675-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It has been conjectured that a generic diffeomorphism on a compact manifold will have trivial centralizer. We give some partial results towards proving this conjecture within the class of area preserving diffeomorphisms of the sphere.
引用
收藏
页码:1101 / 1108
页数:8
相关论文
共 13 条
[1]   DIFFEOMORPHISMS WITH DISCRETE CENTRALIZER [J].
ANDERSON, B .
TOPOLOGY, 1976, 15 (02) :143-147
[2]  
[Anonymous], B SOC BRASIL MAT
[3]  
ARTEAGA C, 1995, BOL SOC BRAS MAT, P149
[4]   Centralizers of partially hyperbolic diffeomorphisms [J].
Burslem, L .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :55-87
[5]   Regions of instability for non-twist maps [J].
Franks, J ;
Le Calvez, P .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :111-141
[6]  
KOPELL N., 1970, GLOBA ANAL PROC SYMP, V14, P165
[7]  
PALIS J, 1989, ANN SCI ECOLE NORM S, V22, P81
[8]  
PALIS J, 1989, ANN SCI ECOLE NORM S, V22, P99
[9]   PLANAR HOMOCLINIC POINTS [J].
PIXTON, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (03) :365-382
[10]   CLOSING STABLE AND UNSTABLE MANIFOLDS ON 2 SPHERE [J].
ROBINSON, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (01) :299-303