Hypoglycentic action of thiazolidinediones/peroxisome proliferator-activated receptor γ by inhibition of the c-Jun NH2-terminal kinase pathway

被引:46
作者
Diaz-Delfin, Julieta
Morales, Monica
Caelles, Carme
机构
[1] Inst Biomed Res, E-08028 Barcelona, Spain
[2] Univ Barcelona, Dept Biochem & Mol Biol Pharm, Barcelona, Spain
关键词
D O I
10.2337/db06-1293
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Type 2 diabetes results from progressive pancreatic P-cell dysfunction caused by chronic insulin resistance. Activation of c-Jun NH2-terminal kinase (JNK) inhibits insulin signaling in cultured cells and in vivo and thereby promotes insulin resistance. Conversely, the peroxisome proliferator-activated receptor (PPAR) gamma synthetic ligands thiazolidinediones (TZDs) enhance insulin sensitivity. Here, we show that the TZD)s rosiglitazone and troglitazone inhibit tumor necrosis factor-alpha-induced JNK activation in 3T3-L1 adipocytes. Our results indicate that PPAR gamma mediates this inhibitory action because 1) it is reproduced by other chemically unrelated PPAR gamma agonist ligands and blocked by PPAR gamma antagonists; 2) it is enhanced by PPAR gamma overexpression; and 3) it is abrogated by PPAR gamma RNA interference. In addition, we show that rosiglitazone inhibits JNK activation and promotes the survival of pancreatic beta-cells exposed to interleukin-1 beta. In vivo, the abnormally elevated JNK activity is inhibited in peripheral tissues by rosiglitazone in two distinct murine models of obesity. Moreover, rosiglitazone fails to enhance insulin-induced glucose uptake in primary adipocytes from ob/ob JNK1(-/-) mice. Accordingly, we demonstrate that the hypoglycemic action of rosiglitazone is abrogated in the diet-induced obese JNK1-deficient mice. In summary, we describe a novel mechanism based on targeting the JNK signaling pathway, which is involved in the hypoglycemic and potentially in the pancreatic P-cell protective actions of TZDs/PPAR gamma.
引用
收藏
页码:1865 / 1871
页数:7
相关论文
共 43 条
[1]   The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307 [J].
Aguirre, V ;
Uchida, T ;
Yenush, L ;
Davis, R ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :9047-9054
[2]   The c-Jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic β-cells [J].
Ammendrup, A ;
Maillard, A ;
Nielsen, K ;
Andersen, NA ;
Serup, P ;
Madsen, OD ;
Mandrup-Poulsen, T ;
Bonny, C .
DIABETES, 2000, 49 (09) :1468-1476
[3]   Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages [J].
Aouadi, M ;
Laurent, K ;
Prot, M ;
Le Marchand-Brustel, Y ;
Binétruy, B ;
Bost, F .
DIABETES, 2006, 55 (02) :281-289
[4]   Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension [J].
Barroso, I ;
Gurnell, M ;
Crowley, VEF ;
Agostini, M ;
Schwabe, JW ;
Soos, MA ;
Maslen, GL ;
Williams, TDM ;
Lewis, H ;
Schafer, AJ ;
Chatterjee, VKK ;
O'Rahilly, S .
NATURE, 1999, 402 (6764) :880-883
[5]   JNK: a new therapeutic target for diabetes [J].
Bennett, BL ;
Satoh, Y ;
Lewis, AJ .
CURRENT OPINION IN PHARMACOLOGY, 2003, 3 (04) :420-425
[6]   Thiazolidinediones produce a conformational change in peroxisomal proliferator-activated receptor-gamma: Binding and activation correlate with antidiabetic actions in db/db mice [J].
Berger, J ;
Bailey, P ;
Biswas, C ;
Cullinan, CA ;
Doebber, TW ;
Hayes, NS ;
Saperstein, R ;
Smith, RG ;
Leibowitz, MD .
ENDOCRINOLOGY, 1996, 137 (10) :4189-4195
[7]   Cell-permeable peptide inhibitors of JNK novel blockers of β-cell death [J].
Bonny, C ;
Oberson, A ;
Negri, S ;
Sauser, C ;
Schorderet, DF .
DIABETES, 2001, 50 (01) :77-82
[8]   Glucocorticoid receptor-JNK interaction mediates inhibition of the JNK pathway by glucocorticoids [J].
Bruna, A ;
Nicolàs, M ;
Muñoz, A ;
Kyriakis, JM ;
Caelles, C .
EMBO JOURNAL, 2003, 22 (22) :6035-6044
[9]   Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women [J].
Buchanan, TA ;
Xiang, AH ;
Peters, RK ;
Kjos, SL ;
Marroquin, A ;
Goico, J ;
Ochoa, C ;
Tan, S ;
Berkowitz, K ;
Hodis, HN ;
Azen, SP .
DIABETES, 2002, 51 (09) :2796-2803
[10]   Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway [J].
Caelles, C ;
González-Sancho, JM ;
Muñoz, A .
GENES & DEVELOPMENT, 1997, 11 (24) :3351-3364