Multi-Memory Convolutional Neural Network for Video Super-Resolution

被引:155
作者
Wang, Zhongyuan [1 ]
Yi, Peng [1 ]
Jiang, Kui [1 ]
Jiang, Junjun [2 ,3 ]
Han, Zhen [1 ]
Lu, Tao [4 ]
Ma, Jiayi [5 ]
机构
[1] Wuhan Univ, Sch Comp, Natl Engn Res Ctr Multimedia Software, Wuhan 430072, Hubei, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[4] Wuhan Inst Technol, Sch Comp Sci & Engn, Wuhan 430205, Hubei, Peoples R China
[5] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network; video super resolution; long short-term memory; multi-memory residual block; ALGORITHM;
D O I
10.1109/TIP.2018.2887017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video super-resolution (SR) is focused on reconstructing high-resolution frames from consecutive low-resolution (LR) frames. Most previous video SR methods based on convolutional neural networks (CNN) use a direct connection and single-memory module within the network, and thus, they fail to make full use of spatio-temporal complementary information from LR observed frames. To fully exploit spatio-temporal correlations between adjacent LR frames and reveal more realistic details, this paper proposes a multi-memory CNN (MMCNN) for video SR, cascading an optical flow network and an image-reconstruction network. A series of residual blocks engaged in utilizing intra-frame spatial correlations is proposed for feature extraction and reconstruction. Particularly, instead of using a single-memory module, we embed convolutional long short-term memory into the residual block, thus forming a multi-memory residual block to progressively extract and retain inter-frame temporal correlations between the consecutive LR frames. We conduct extensive experiments on numerous testing datasets with respect to different scaling factors. Our proposed MMCNN shows superiority over the state-of-the-art methods in terms of PSNR and visual quality and surpasses the best counterpart method by 1 dB at most.
引用
收藏
页码:2530 / 2544
页数:15
相关论文
共 55 条
  • [11] Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding
    Bevilacqua, Marco
    Roumy, Aline
    Guillemot, Christine
    Morel, Marie-Line Alberi
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [12] Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation
    Caballero, Jose
    Ledig, Christian
    Aitken, Andrew
    Acosta, Alejandro
    Totz, Johannes
    Wang, Zehan
    Shi, Wenzhe
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2848 - 2857
  • [13] Sparse Representation-Based Multiple Frame Video Super-Resolution
    Dai, Qiqin
    Yoo, Seunghwan
    Kappeler, Armin
    Katsaggelos, Aggelos K.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) : 765 - 781
  • [14] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [15] Hyperspectral Image Super-Resolution via Non-Negative Structured Sparse Representation
    Dong, Weisheng
    Fu, Fazuo
    Shi, Guangming
    Cao, Xun
    Wu, Jinjian
    Li, Guangyu
    Li, Xin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (05) : 2337 - 2352
  • [16] FlowNet: Learning Optical Flow with Convolutional Networks
    Dosovitskiy, Alexey
    Fischer, Philipp
    Ilg, Eddy
    Haeusser, Philip
    Hazirbas, Caner
    Golkov, Vladimir
    van der Smagt, Patrick
    Cremers, Daniel
    Brox, Thomas
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2758 - 2766
  • [17] Fast and robust multiframe super resolution
    Farsiu, S
    Robinson, MD
    Elad, M
    Milanfar, P
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (10) : 1327 - 1344
  • [18] Example-based super-resolution
    Freeman, WT
    Jones, TR
    Pasztor, EC
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2002, 22 (02) : 56 - 65
  • [19] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [20] Deep Back-Projection Networks For Super-Resolution
    Haris, Muhammad
    Shakhnarovich, Greg
    Ukita, Norimichi
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1664 - 1673