A New Detection Algorithm for Coherent Scatterers in SAR Data

被引:30
作者
Sanjuan-Ferrer, Maria J. [1 ]
Hajnsek, Irena [1 ]
Papathanassiou, Konstantinos P. [1 ]
Moreira, Alberto [1 ]
机构
[1] German Aerosp Ctr DLR, Microwaves & Radar Inst HR, D-82234 Wessling, Germany
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 11期
关键词
Coherent scatterers (CSs); likelihood ratio test; signal processing; synthetic aperture radar (SAR); target detection; PERMANENT SCATTERERS; RADAR DETECTION;
D O I
10.1109/TGRS.2015.2438173
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In contrast to the random nature of synthetic aperture radar (SAR) data, it is also possible to identify bright targets whose scattering properties scarcely vary within imaging and time. These targets are commonly named point-like scatterers and can be found in both urban and natural environments. Permanent-scatterer interferometry techniques single out stable scatterers in a stack of SAR images, which preserve their backscattering stability along time. However, this methodology may not be optimum in natural scenarios, where the temporal stability of the scattering is rather reduced, or when the number of available SAR acquisitions is significantly small. Consequently, alternative methods have come out to detect stable scatters in a single SAR image, thus reducing all constraints related to their temporal behavior. Particularly, spectral diversity techniques are exploited to detect the so-called coherent scatterers. In this paper, a new detection scheme based on the generalized likelihood ratio test approach (GLRTA) is proposed, and its performance is extensively evaluated compared with three of the traditional methods, namely, the sublook coherence approach, the sublook entropy approach, and the phase variance approach. Remarkably, the GLRTA exploits both amplitude and phase information and does not need any further averaging (apart from sublooking processing with reduced signal bandwidth). The presented analysis is conducted both theoretically and with simulated data. For all scenarios, the new detector outperforms the other methods. The obtained results are validated also on real data. Finally, the proposed GLRTA is tested over different scattering scenarios, considering three TerraSAR-X acquisitions.
引用
收藏
页码:6293 / 6307
页数:15
相关论文
共 38 条
[1]  
[Anonymous], 1998, FUNDEMENTALS STAT SI
[2]   Synthetic aperture radar interferometry [J].
Bamler, R ;
Hartl, P .
INVERSE PROBLEMS, 1998, 14 (04) :R1-R54
[3]   The Coherent Pixels Technique (CPT):: An advanced DInSAR technique for nonlinear deformation monitoring [J].
Blanco-Sanchez, Pablo ;
Mallorqui, Jordi J. ;
Duque, Sergi ;
Monells, Daniel .
PURE AND APPLIED GEOPHYSICS, 2008, 165 (06) :1167-1193
[4]   Multichromatic Analysis of Satellite Wideband SAR Data [J].
Bovenga, F. ;
Rana, F. M. ;
Refice, A. ;
Veneziani, N. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (10) :1767-1771
[5]  
Bovenga F., 2009, P IEEE IGARSS, pIV
[6]   Multi-Chromatic Analysis of SAR Images for Coherent Target Detection [J].
Bovenga, Fabio ;
Derauw, Dominique ;
Rana, Fabio Michele ;
Barbier, Christian ;
Refice, Alberto ;
Veneziani, Nicola ;
Vitulli, Raffaele .
REMOTE SENSING, 2014, 6 (09) :8822-8843
[7]   ASYMPTOTICALLY OPTIMUM RADAR DETECTION IN COMPOUND-GAUSSIAN CLUTTER [J].
CONTE, E ;
LOPS, M ;
RICCI, G .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1995, 31 (02) :617-625
[8]  
Cumming I. G., 2005, ARTECH REM, V1, P108
[9]   Detection of Single Scatterers in Multidimensional SAR Imaging [J].
De Maio, Antonio ;
Fornaro, Gianfranco ;
Pauciullo, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (07) :2284-2297
[10]   Wide band SAR sub-band splitting and inter-band coherence measurements [J].
Derauw, Dominique ;
Orban, Anne ;
Barbier, Christian .
REMOTE SENSING LETTERS, 2010, 1 (03) :133-140