On the criteria guiding the design of the upper electron-cyclotron launcher for ITER

被引:2
作者
Poli, E. [1 ]
Angioni, C. [1 ]
Casson, F. J. [1 ]
Farina, D. [2 ]
Figini, L. [2 ]
Goodman, T. P. [3 ]
Maj, O. [1 ]
Sauter, O. [3 ]
Weber, H. [1 ]
Zohm, H. [1 ]
Saibene, G. [4 ]
Henderson, M. A. [5 ]
机构
[1] EURATOM, Max Planck Inst Plasmaphys, D-14476 Garching, Germany
[2] EURATOM ENEA CNR Assoc, Ist Fis Plasma CNR, Milan, Italy
[3] CRPP EPFL, Ctr Rech Phys Plasmas, Lausanne, Switzerland
[4] Fus Energy, Barcelona, Spain
[5] ITER Org, St Paul Les Durance, France
来源
EC18 - 18TH JOINT WORKSHOP ON ELECTRON CYCLOTRON EMISSION AND ELECTRON CYCLOTRON RESONANCE HEATING | 2015年 / 87卷
关键词
TEARING MODE STABILIZATION; TOKAMAK PLASMAS; CURRENT DRIVE;
D O I
10.1051/epjconf/20158701008
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electron cyclotron waves injected from an antenna located in the upper part of the vessel will be employed in ITER to control MHD instabilities, particularly neoclassical tearingmodes (NTMs). The derivation of the NTM stabilization criteria used up to now to guide the optimization of the launcher is reviewed in this paper and their range of validity elucidated. Possible effects leading to a deterioration of the predicted performance through a broadening of the EC deposition profile are discussed. The most detrimental effect will likely be the scattering of the EC beams from density fluctuations, resulting in a beam broadening in the 100% range. The combined impact of these effects with that of beam misalignment (with respect to the targeted surface) is discussed for a time slice of the standard Q = 10 H-mode scenario.
引用
收藏
页数:6
相关论文
共 23 条
[1]   Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes [J].
Ayten, B. ;
Westerhof, E. .
NUCLEAR FUSION, 2014, 54 (07)
[2]   Requirements on localized current drive for the suppression of neoclassical tearing modes [J].
Bertelli, N. ;
De Lazzari, D. ;
Westerhof, E. .
NUCLEAR FUSION, 2011, 51 (10)
[3]   ECCD calculations in ITER by means of the quasi-optical code [J].
Bertelli, N. ;
Balakin, A. A. ;
Westerhof, E. ;
Buyanova, M. N. .
NUCLEAR FUSION, 2010, 50 (11)
[4]   Consequences of finite transport on the effectiveness of ECCD for neoclassical tearing mode stabilization in ITER [J].
Bertelli, N. ;
Westerhof, E. .
NUCLEAR FUSION, 2009, 49 (09)
[5]  
Casson F. J., 2014, UNPUB
[7]   Dynamical modelling of tearing mode stabilization by RF current drive [J].
Giruzzi, G ;
Zabiégo, M ;
Gianakon, TA ;
Garbet, X ;
Cardinali, A ;
Bernabei, S .
NUCLEAR FUSION, 1999, 39 (01) :107-125
[8]   On the stabilization of neoclassical magnetohydrodynamic tearing modes using localized current drive or heating [J].
Hegna, CC ;
Callen, JD .
PHYSICS OF PLASMAS, 1997, 4 (08) :2940-2946
[9]   NONLINEAR DYNAMICS OF MAGNETIC ISLANDS WITH CURVATURE AND PRESSURE [J].
KOTSCHENREUTHER, M ;
HAZELTINE, RD ;
MORRISON, PJ .
PHYSICS OF FLUIDS, 1985, 28 (01) :294-302
[10]   Requirements for alignment of electron cyclotron current drive for neoclassical tearing mode stabilization in ITER [J].
La Haye, R. J. ;
Ferron, J. R. ;
Humphreys, D. A. ;
Luce, T. C. ;
Petty, C. C. ;
Prater, R. ;
Strait, E. J. ;
Welander, A. S. .
NUCLEAR FUSION, 2008, 48 (05)