Smoothness and long time existence for solutions of the porous medium equation on manifolds with conical singularities

被引:10
作者
Roidos, Nikolaos
Schrohe, Elmar
机构
[1] Institut für Analysis, Leibniz Universität Hannover, Welfengarten 1, Hannover
关键词
Conical singularities; Long time existence; Maximal regularity; Porous medium equation; Smoothing effect; BOUNDED IMAGINARY POWERS; DIFFERENTIAL-OPERATORS; DYNAMIC THEORY; REGULARITY;
D O I
10.1080/03605302.2018.1517788
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the porous medium equation on manifolds with conical singularities. Given strictly positive initial values, we show that the solution exists in the maximal L-q-regularity space for all times and is instantaneously smooth in space and time, where the maximal L-q-regularity is obtained in the sense of Mellin-Sobolev spaces. Moreover, we obtain precise information concerning the asymptotic behavior of the solution close to the singularity. Finally, we show the existence of generalized solutions for non-negative initial data.
引用
收藏
页码:1456 / 1484
页数:29
相关论文
共 23 条
[2]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[3]  
Amann H., 1995, LINEAR QUASILINEAR P, V89
[4]   LP-maximal regularity for non-autonomous evolution equations [J].
Arendt, Wolfgang ;
Chill, Ralph ;
Fornaro, Simona ;
Poupaud, Cesar .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (01) :1-26
[5]   LARGE TIME BEHAVIOR OF SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN BOUNDED DOMAINS [J].
ARONSON, DG ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 39 (03) :378-412
[6]  
Bahuaud E., 2016, ARXIV160503935
[7]  
Clement P., 1993, Adv. Math. Sci. Appl., V3, P17
[8]   Bounded imaginary powers of differential operators on manifolds with conical singularities [J].
Coriasco, S ;
Schrohe, E ;
Seiler, J .
MATHEMATISCHE ZEITSCHRIFT, 2003, 244 (02) :235-269
[9]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[10]   ON THE CLOSEDNESS OF THE SUM OF 2 CLOSED OPERATORS [J].
DORE, G ;
VENNI, A .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (02) :189-201